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Preface 

The design of nonlinear controllers for mechanical systems has been an ex­
tremely active area of research in the last two decades. From a theoretical 
point of view, this attention can be attributed to their interesting dynamic 
behavior, which makes them suitable benchmarks for nonlinear control the­
oreticians. On the other hand, recent technological advances have produced 
many real-world engineering applications that require the automatic con­
trol of mechanical systems. 

Often, Lyapunov-based techniques are utilized as the mechanism for de­
veloping different nonlinear control structures for mechanical systems. The 
allure of the Lyapunov-based framework for mechanical system control de­
sign can most likely be assigned to the fact that Lyapunov function candi­
dates can often be crafted from physical insight into the mechanics of the 
system. That is, despite the nonlinearities, couplings, and/or the flexible 
effects associated with the system, Lyapunov-based techniques can often be 
used to analyze the stability of the closed-loop system by using an energy­
like function as the Lyapunov function candidate. In practice, the design 
procedure often tends to be an iterative process that results in the death 
of many trees. That is, the controller and energy-like function are often 
constructed in concert to foster an advantageous stability property and/or 
robustness property. Fortunately, over the last 15 years, many system the­
ory and control researchers have labored in this area to produce various 
design tools that can be applied in a variety of situations. Concurrent with 
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this theoretical progress, many control research groups around the world 
have developed real-time computer platforms and the associated hardware 
to facilitate the implementation of nonlinear control strategies for many 
different types of applications (e.g., electric motors, magnetic bearings, ro­
botics, flexible structures, etc.). 

The simultaneous progress of Lyapunov-based control techniques and 
real-time computer system technology promulgated the research delineated 
in this book. It is our intent to illustrate, in a modest way, how Lyapunov­
based techniques can be used to design nonlinear controllers for mechanical 
systems. In the first half of the book, we focus our attention on the design 
of controllers for rigid mechanical systems, while in the latter half of the 
book, we design boundary controllers for systems that exhibit vibrations 
owing to structural flexibilities. Experimental results are provided for al­
most every controller to illustrate the feasibility of the theoretical concepts. 
The book is organized' as follows. In Chapter 1, we provide the motivation 
for the control design problems tackled in subsequent chapters. In Chapter 
2, we visit a problem common to many mechanical systems - the com­
pensation for friction effects. Specifically, we present the design of several 
friction compensation controllers for position setpoint and tracking appli­
cations of single-input single-output, rigid mechanical systems. Some of the 
control design issues in this chapter (e.g., parametric uncertainty, modular 
control/ adaptation law design, and unmeasurable state variables) will serve 
as a preview for the topics presented in Chapters 3 and 4 for multi-input 
multi-output (MIMO), rigid mechanical systems. In Chapter 3, we design 
adaptive tracking controllers for MIMO systems using full-state feedback. 
Since velocity measurements in mechanical systems are often noisy or inac­
curate, several solutions to the MIMO, output feedback, tracking problem 
are given in Chapter 4. In Chapters 5 through 7, we turn our attention 
to flexible mechanical systems with the intention of illustrating how Lya­
punov techniques, which normally are applied to systems modeled by ordi­
nary differential equations, can be extended to systems described by partial 
differential equations. In these chapters, we design both model-based and 
adaptive boundary controllers, with the former serving as a stepping stone 
for the latter. Chapter 5 presents boundary controllers for string-like sys­
tems, while Chapter 6 deals with the design of boundary controllers for 
flexible beams. In Chapter 7, we focus on flexible systems that model some 
typical, real-world engineering applications. Specifically, we design bound­
ary control strategies for an axially moving string system, a flexible link 
robot manipulator, and a flexible rotor system. A significant portion of 
the mathematical background necessary to follow the control designs and 
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analyses are combined in Appendix A. With the exception of Chapter 1, 
each chapter includes detailed proofs. While a few of the proofs in some of 
the chapters appear to be slightly repetitive, we believe this will allow the 
reader to follow each chapter with a certain level of independence. 

All of the material contained in this book (unless noted otherwise) has 
resulted from the authors' research over the last seven years. The material 
is intended for audiences with an undergraduate background in control 
theory and linear systems. Some knowledge of nonlinear systems theory 
would also be useful; however, we do not believe that it is necessary. This 
book is mainly aimed at researchers and graduate students in the area of 
control applications. 

We would like to acknowledge and express our sincere gratitude to Pro­
fessor Chris Rahn for introducing us to the boundary control philosophy 
and for his technical support in the flexible structures area. Special appreci­
ation is also due to the following past and present graduate students of the 
Department of Electrical and Computer Engineering at Clemson University 
whose hard work throughout the past seven years made this book a real­
ity: Manish Agarwal, Keith Anderson, Tim Burg, Hliseyin Canbolat, Nick 
Costescu, Bret Costic, Warren Dixon, Matthew Feemster, Deepak Haste, 
Ser-Yong Lim, Mike Mercier, Praveen Vedagarhba, and Erkan Zergeroglu. 

Baton Rouge, Louisiana 
Clemson, South Carolina 

Marcio de Queiroz 
Darren Dawson 
Siddharth Nagarkatti 
Fumin Zhang 
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1 
Introduction 

1.1 Lyapunov-Based Control 

The synthesis of controllers basically involves two steps: (i) the design step, 
where the goal is to construct a control algorithm for a given system to sat­
isfy certain performance specifications; and (ii) the analysis step; where the 
goal is to verify the closed-loop system behavior (e.g., stability properties) 
once the controller has been designed. For a nonlinear system, these two 
steps become interdependent in the sense that the design and analysis are 
the result of an iterative procedure. The nuances of this iterative proce­
dure become explicitly apparent if one exploits Lyapunov's stability the­
aryl (i.e., the so-called Direct Method) for the control design and analysis. 
Roughly speaking, Lyapunov's Direct Method is a mathematical interpre­
tation of the physical property that if a system's total energy is dissipating, 
then the states of the system will ultimately travel to an equilibrium point 
[6]. Simply stated, this property can be explored by constructing a scalar, 
energy-related function for the system (e.g., V (t), where this function usu­
ally contains the closed-loop system states2 ) and then investigating its time 
variation denoted by V (t). If V (t) :S 0, then we know that V (t) is a de­
creasing or constant function of time (Le., the energy is being dissipated or 

1 For formal and detailed presentations of this theory, the reader is refered to [2, 6]. 
2 Since V (t) is related to the energy of the system, it must be a non-negative function. 
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held at a constant level) and will eventually reach a constant; hence, the 
closed-loop system is considered to be stable in some sense. 

The main dilemmas that one has to face in a Lyapunov-based framework 
are (i) how does one select the energy-related function? and (ii) should the 
energy-related function simply be composed of the system's kinetic and 
potential energy or should it include other terms as well? Unfortunately, 
there do not seem to be straightforward answers to these questions because 
the selection of the energy-related function is not unique. Indeed, this se­
lection of V (t) is the very fact that makes Lyapunov design so interesting; 
moreover, it is here that the iterative nature of the control design and the 
closed-loop stability analysis materializes. Specifically, the selection of V (t) 
will directly depend on the structure of the closed-loop system and, hence 
the structure of the controller. It is the authors' belief that a better un­
derstanding of this synergy can be obtained from experience and physical 
insight into the system. In fact, one of the main objectives of this book is 
to assist the reader in acquiring these skills. We hope to achieve this goal 
by presenting Lyapunov-based control strategies for a variety of nonlinear 
control problems that capture the strengths and inherent flexibility of the 
approach. In particular, we will illustrate how Lyapunov designs can be 
utilized to address the following issues: 

• Model uncertainty 

• Unavailability of full-state feedback 

• Global stability VB. semiglobal stability 

• Modular design of control and parameter adaptation laws 

• Control of distributed parameter systems. 

The discussion of Lyapunov-based designs in this book will be restricted 
to control problems for mechanical systems. The name "mechanical sys­
tem" is used loosely to denote a class of physical systems whose dynamic 
behavior can be derived via well-known methods of analytical dynamics 
[4] such as Newton's laws, Lagrange's equations of motion, or Hamilton's 
principle. The focus on mechanical systems can be explained by the ob­
servation that many applied nonlinear control researchers, despite their 
technical background, have often found themselves working on applications 
involving some kind of mechanical subsystem. A few typical examples of 
such practice are robotics, magnetic bearings, and spacecraft applications. 
This emphasis may also be attributed to the fact that many nonlinear con­
trol techniques often owe their existence to a particular class of mechanical 
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system. The mechanical systems considered in this book will be subdivided 
into two classes: 

• Rigid Mechanical Systems - Systems represented by ordinary 
differential equations (ODE). 

• Flexible Mechanical Systems - Systems represented by partial 
differential equations (PDE) owing to the independence of the spatial 
and time variables. (These systems are also often called distributed 
parameter or infinite dimensional systems.) 

In the following two sections, we briefly preview the control problems for 
these classes of systems that will be presented in the subsequent chapters. 

1.2 Rigid Mechanical Systems 

Consider the following ODE: 

x(t) + f (x(t), x(t), B) = u, (1.1) 

where x(t), x(t), x(t) E IR denote the position, velocity, and acceleration, 
respectively, of the system; f (x, x, B) E IR is some nonlinear function; B 
is a constant system parameter; and u(t) E IR is the control input. The 
main control objective for the system of (1.1) can be stated as follows: 
given a sufficiently smooth, desired trajectory for x(t), denoted by Xd(t), 
design a control law u(t) such that x(t) -+ Xd(t) as t -+ 00. The solution to 
this control design problem is based on the paradigm of feedforward and 
feedback control. To illustrate this paradigm, let us examine a few cases 
that are dependent on the level of information available with regard to the 
model of (1.1). For the sake of simplicity, we will assume that Xd(t) = 0 
"It 2 o. First, in the standard case, where x(t), x(t) are measurable (Le., 
full-state feedback) and the nonlinearity f (.) is exactly known, one could 
design u(t) as follows: 

u = f (x, x, B) - (kdx + kpx) . 
~ '-v----' 

feedforward feedback 
(1.2) 

This control law is commonly known as a feedback linearizing controller 
since the nonlinearities are canceled out and the closed-loop system be­
comes the linear system: 

(1.3) 
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A Lyapunov-based stability analysis of (1.3) can be performed by selecting 
the following non-negative function: 

potential energy-type term 
,,-.A-.. 

1 .2 1 2 
V ="2 x +"2kp x 

'-v-' 
kinetic energy-type term 

and calculating its derivative along (1.3) as follows: 

(1.4) 

(1.5) 

The application of LaSalle's invariance principle [6] to (1.3) and (1.5) can 
be used to show that x(t) -t 0 as t -t 00 for all x(O), x(O) E R 

Consider now the case, where e is unknown. Based on the form of (1.2), a 
good choice for the control law would be the certainty equivalence controller 
given by 

(1.6) 

where 8(t) represents an estimate of e. Note that now the feedforward 
term of (1.6) will not directly cancel the nonlinearity in (1.1) owing to the 
mismatch between e and 8(t); hence, the linear closed-loop system given by 
(1.3) will not be achieved. The question then becomes how to .design 8(t) 
and select V (t) such that we can still show that x(t) -t 0 as t -t 00, \fx(O), 
x(O) ERIn anticipation of what will be seen in the subsequent chapters, 
the solution to this problem is greatly facilitated if the function f (-) can 
be linearly parameterized in the sense that 

f (x, x, e) = Y (x, x) e, (1.7) 

where Y (x, x) E lR. is a known function dependent only on x(t) and x(t). 
Consider now the case, where the velocity x(t) is not directly available 

for feedback owing to noisy measurements or the lack of velocity sensors. 
Since the only state information available to the controller is the position, 
this problem is usually referred to as the output feedback (OFB) problem. 
If the parameter e is known, a natural choice for the control law might be 
to replace all occurrences of the actual velocity with an estimated velocity 
signal as follows: 

. . 
u = f(x, x, e) - kd x -kpx, (1.8) 

where x (t) denotes the estimated velocity. One must now determine how 
to properly design a velocity observer that generates a velocity surrogate 
from position measurements while also ensuring that x(t) -t 0 as t -t 00. 
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Further difficulties arise if the parameter e is also unlalOWll. This additional 
uncertainty might require an entirely different control approach, a different 
method of constructing the velocity surrogate, and a different Lyapunov­
like function. Another issue that often arises in the OFB problem concerns 
the set of initial conditions for which the stability result holds. That is, is 
it still feasible to achieve a global stability result (i.e., one that holds for 
all x(O), x(O) E lR)? For example, an OFB controller may only guarantee a 
semiglobal stability result.3 

1.3 Flexible Mechanical Systems 

The term flexible mechanical system used in this book refers to systems 
modeled by PDEs. The presence of partial derivatives in the dynamic equa­
tions can be attributed to the independence of the spatial and time vari­
ables. That is, the motion of this type of distributed parameter mechanical 
system depends not only on time but also on the spatial position. Distrib­
uted parameter systems are typically governed by a PDE that must be 
satisfied over all interior points of the domain and a set of boundary condi­
tions. The boundary conditions can either be static or dynamic in nature 
and must be satisfied at the points bounding the domain. 

Some of the more popular methods used to control distributed parameter 
systems are based on (i) applying traditional linear control techniques to 
a discretized system model obtained through modal analyses, (ii) applying 
a distributed control by using smart sensors and actuators, or (iii) using 
active boundary control strategies. The primary disadvantage of designing 
a controller based on a discretized model is that the controller could po­
tentially excite unmodeled, high-order vibration modes that were neglected 
during the discretization process (Le., spillover effects). The primary dis­
advantage of distributed control is that the sensing and actuation can be 
costly to implement. In contrast, boundary control techniques utilize the 
distributed parameter model for control design purposes (hence, spillover 
effects are avoided) and require relatively few sensors and actuators. For 
these reasons, we will limit the discussion of control techniques for distrib­
uted parameter systems to the boundary control philosophy. 

3To guarantee a semiglobal stability result, a control gain often has to be adjusted 

according to the "size" of the initial conditions. 
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~f 
L ~ 
F_~L x 

FIGURE 1.1. Typical flexible mechanical system. 

To examine the boundary control problem for flexible mechanical sys­
tems, let us consider the following illustrative field equation: 

Utt (x, t) - U xx (x, t) = 0 (1.9) 

along with the boundary conditions 

u(O,t)=O U X (L, t) = f (t) , (1.10) 

where x E [0, L] denotes the independent position variable; t denotes the 
independent time variable; u(x, t) E lR denotes the displacement at position 
x for time t; the subscripts x, t represent partial derivatives with respect to 
x, t, respectively; and f(t) E lR is a control input applied at the boundary 
position x = L. The simple string-like system shown in Figure 1.1 can be 
seen as a graphical representation of the flexible system described by (1.9) 
and (1.10). 

The control objective for the above system is to design a control law for 
f (t), a function only of boundary variables, such that vibrations throughout 
the whole system domain are eliminated (i.e., drive u(x, t) -+ 0 Vx E [0, L] 
as t -+ 00). Similar to the concept of feedforwardj feedback control outlined 
in Section 1.2, the solution to this control problem is founded on the par­
adigm that f(t) should act as an active damper-like force that sucks the 
energy out of the system. The level of sophistication of this damper-like 
force is directly related to system model. For example, as will be shown 
below, the linear distributed parameter model of (1.9) and (1.10) requires 
only a simple damper in the form of a negative boundary velocity feedback 
term to force u(x, t) to zero Vx E [0, L]. On the other hand, as will be seen 
in Chapters 5 to 7, a more complicated flexible, mechanical system model 
ma..'1dates the use of a more complex boundary control law. 

To illustrate the boundary control design and analysis procedure, let us 
consider the following boundary control law for the system described by 
(1.9) and (1.10): 

f = -kut(L, t), (1.11) 
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where k is a positive scalar control gain. Note that the above controller is 
only dependent on the measurement of the signal Ut(x, t) at the boundary 
position x = L. The form of (1.11) is based on the concept that negative 
velocity feedback increases the damping in the system. To illustrate this 
fact via a Lyapunov-like analysis, one could use the function 

potential energy 
A 

V(t) = ~ rL u;(a,t)da+'~ r L u;(a,t)d;+2{3 rL aut(a,t)ua(a,t)da, 
2 Jo 2 Jo Jo 

, v"---' 

kinetic energy 
(1.12) 

where (3 is a small, positive weighting constant that is used to ensure that 
V(t) is non-negative. After some algebraic manipulation and some integra­
tion by parts, the evaluation of the time derivative of (1.12) along (1.9), 
(1.10), and (1.11) produces 

V(t) ::; -{31L (u;(a, t) + u; (a, t)) da (1.13) 

for sufficiently small (3. The application of some standard integral inequal­
ities to (1.12) and (1.13) can now be used to show that u(x, t) -+ 0 
'rIx E [0, L] as t -+ 00. It is important to mention that the third term in the 
definition of (1.12), although seeming to lack a physical interpretation, is 
crucial in obtaining (1.13). 

In contrast to the simple example above, the boundary control problems 
attacked in this book concentrate on distributed parameter models that 
are more complex and that are often used to describe a specific engineer­
ing application. As a result, the system models will contain the following 
complicating features: (i) nonlinear field equation; (ii) linear or nonlinear, 
dynamic boundary condition; (iii) unknown, constant parameters (e.g., ten­
sion, mass, inertia, bending stiffness, etc.); and/or (iv) PDE-ODE coupling 
(i.e., a hybrid, flexible-rigid mechanical system). 

1.4 Real-Time Control Implementation 

The development of any control algorithm is of limited interest if it can­
not be implemented in real-time. The implementation issue for nonlinear 
controllers is particularly important because the algorithms tend to have 
a complex structure in comparison to standard linear controllers. In fact, 
this issue often raises doubts about the feasibility of advanced controllers. 
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To complement the theoretical control developments presented in the sub­
sequent chapters of this book, we now briefly describe the real-time control 
environments used in their experimental validations. 

In 1993, WinMotor, a Windows 3.11-based graphical user interface (GUI) 
and programming environment, was developed at Clemson University to 
compile and execute C programs in real-time to control various electro­
mechanical systems [3]. TheWinMotor environment used a TMS320C30 
digital signal processor (DSP) board to execute the control program, and 
a host Intel-486 personal computer (PC) to perform user interface tasks 
such as on-line graphing and tuning of control parameters. Data storage 
was provided in a MATLAB-ready format, thereby allowing the user to 
analyze the data further. The data acquisition interface consisted of a DS2 
encoder interface board from Integrated Motions. As PC CPU technology 
advanced and real-time operating systems for PCs became widely available, 
we developed the Qmotor control environment [1] to execute both the GUI 
and the control program on the same CPU, thereby eliminating the need 
for special purpose DSPs. Qmotor is a QNX-based [5] (micro-kernel, real­
time operating system) GUI and programming environment that runs on 
an Intel Pentium-II PC. In addition to the user interface features provided 
in WinM otor, some enhancements were introduced in Qmotor, such as the 
ability to display additional plot variables during a control run and an 
off-line graphing capability to compare the data stored from previous runs. 
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2 
Control Techniques for Friction 
Compensation 

2.1 Introduction 

Friction is a natural phenomenon that affects almost all motion. It has been 
the subject of extensive studies for centuries, with the main objectives be­
ing the design of effective lubricating processes and the understanding of 
the mechanisms of wear. Whereas friction effects at moderate velocities are 
somewhat predictable, it is the effect of friction at low velocities that is 
very difficult to model. The facts that friction changes sign with velocity, is 
asymmetric about the velocity axis, has evolutionary characteristics, and 
exhibits the stick-slip phenomenon, etc., aggravates the problem. Although 
friction effects have been well understood qualitatively, researchers have of­
ten relied on experimental data to formulate various mathematical models. 
A heuristic model for friction was first proposed by Leonardo da Vinci [11] 
in 1519; however, the model failed to capture the low-velocity friction effects 
such as the Stribeck effect, presliding displacement, rising static friction, 
etc., which playa major role in high-precision position/velocity tracking 
applications. In recent years, several dynamic models have been introduced 
to describe this highly nonlinear behavior exhibited by friction. For exam­
ple, Dahl [12] proposed a dynamic model to capture the spring-like behavior 
during stiction. Canudas et al. [9] proposed a dynamic state-variable model 
to capture friction effects such as the Stribeck effect, hysteresis, spring-like 
behavior of stiction, and varying breakaway force. 
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Precise control of mechanical systems in the presence of friction-related 
effects is a very challenging task. The coefficients of the various friction­
related effects are usually very difficult to measure. In addition, the friction­
related coefficients may exhibit evolutionary characteristics; therefore, ef­
fective compensation for friction effects via adaptive control seems well 
motivated. 

In the first part of this chapter (Sections 2.2 and 2.3), we consider a 
reduced-order dynamic representation of the nonlinear friction model pro­
posed in [9], which incorporates viscous, Coulomb, static, and Stribeck 
friction-related effects. A second-order single-input, single-output (SISO) 
mechanical system augmented with this reduced-order friction model is 
used as the basis for the design of two adaptive tracking controllers and 
one adaptive setpoint controller. For benchmark purposes, the first adap­
tive tracking controller is based on a traditional Lyapunov design frame­
work. That is, the controller and the parameter update law are designed 
in conjunction via a single Lyapunov function to ensure global asymptotic 
tracking. This standard adaptive controller is reminiscent of the SISO ver­
sion of the well-known, adaptive controller of Slotine and Li [30]. 

The use of a single Lyapunov function often restricts the design of the 
parameter update law to a standard, gradient-type adaptation driven by 
the position and velocity tracking errors. Since gradient-type update laws 
often exhibit slow parameter convergence, the need for an adaptive control 
methodology that provides flexibility in design of the parameter estimation 
update law is well reasoned. Passivity-based adaptive controllers provide for 
some flexibility in the parameter identifier design; however, the designed up­
date law must satisfy a passive mapping condition [20, 25]. Although mainly 
applied to linear systems, the estimation-based approach to adaptive con­
trol allows for further flexibility in the construction of parameter update 
laws (e.g., prediction error1-based gradient or normalizedjunnormalized 
least-squares update laws can be used in lieu of a standard, gradient-type 
update law). This flexibility is achieved as a result of a modular design of 
the controller and the update law. Recent work by Krstic and Kokotovic [19] 
has successfully extended previous linear, estimation-based techniques to a 
class of p8Iametric-strict-feedback, nonlinear systems by cleverly exploiting 
the nonlinear damping tool (see Lemma A.I0 in Appendix A for details). 
Motivated by the above facts, the second adaptive tracking controller is 
based on the modular design approach proposed in [19]. Specifically, the 

1 The prediction error is defined as the difference between an estimated, filtered version 

of the the mechanical system dynamics and a filtered version of the control input [30J. 
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controller is designed to ensure input-to-state stability with respect to the 
parameter estimation error while the parameter update law is used to com­
pensate for the unknown, constant parameters that appear linearly in the 
model. The design of the controller and the update law is justified by means 
of a composite stability analysis that illustrates global asymptotic position 
tracking. 

Whereas the effects owing to viscous and Coulomb friction can be rep­
resented by a linearly parameterized model, the Stribeck effect is often 
modeled as a nonlinear velocity-dependent function with an unknown, con­
stant parameter appearing nonlinearly in the model. To make this problem 
more tractable, several control designs resort to using approximate linearly 
parameterizable models to represent the Stribeck effect. With the goal of 
avoiding this approximation, we then address the position setpoint control 
problem for mechanical systems with a nonlinearly parameterized Stribeck 
model. Specifically, we utilize the technique discussed in [14, 24] to de­
sign an adaptive controller that compensates for parametric uncertainties 
throughout the entire mechanical system, including the Stribeck friction 
constant even though it does not appear linearly in the model. 

In the latter part of this chapter (Sections 2.4 and 2.5), we consider for 
control design purposes the second-order 8180 mechanical system along 
with the full-order friction model proposed in [9]. A detrimental aspect of 
the full-order friction model is the existence of an unmeasurable, dynamic 
friction state that mandates the inclusion of a friction state estimator in 
the control scheme. To this end, we demonstrate how the mechanical sys­
tem/friction dynamics can be exploited to design different observers or 
filters that lead to the development of a class of partial-state feedback, 
position tracking controllers. First, by assuming exact knowledge of the 
system parameters, we present two model-based observer/controllers that 
share a common control law structure but differ in the observer construc­
tion. Specifically, while the first observer only partially exploits the system 
model and provides asymptotic position tracking, the second observer has 
a more model-based structure and produces exponential position tracking. 
Next, we consider uncertainty in selected parameters of the mechanical sys­
tem/friction dynamics and present two adaptive controllers that achieve as­
ymptotic position tracking. The first adaptive controller utilizes a nonlinear 
observer/filter structure to compensate for uncertainty in all of the system 
parameters except for those associated with the Stribeck effect. The second 
adaptive controller utilizes a different nonlinear observer/filter to compen­
sate for only a single parameter associated with normal force variation in 
the Stribeck effect. 
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2.2 Reduced-Order Friction Model 

The mathematical model for a S1S0 mechanical system in the presence of 
friction is assumed to be of the form 

where q( t), q( t), ij( t) E IR represent the position, velocity, and accelera­
tion, respectively; M denotes the constant inertia of the system; B denotes 
the constant viscous friction coefficient; Fe denotes the Coulomb friction­
related constant; Fs denotes the static friction-related constant; FT is a 
positive constant corresponding to the Stribeck effect; and T(t) E IR is 
the control input. The model of (2.1) is a simplified version of the seven­
parameter model proposed in [1]. Specifically, this model ignores frictional 
effects such as preslid,ing-displacement, frictional memory, and rising-static 
friction. 

Remark 2.1 The saturation function used in (2.1) is defined such that 
sat(O) = 0, qsat(q) :2: 0, and sat(q) E Coo. For the modular adaptive 
controller presented in Section 2.3.2, the sat(·) function will be defined 
as the standard, discontinuous signum function. In contrast, the setpoint 
controller presented in the Section 2.3.3 will require the sat(·) function to 

be first-order differentiable (i.e., 8s~~(q) E Coo Viz E Coo}, or a non­

multivalued, discontinuous function as shown below: 

sat(·) = { ~ 
-1 

for q > 0 
for q = 0 
for q < 0 

(2.2) 

An example of a first-order, differentiable saturation function is tan-l (Kq), 
where K is some large positive constant. Note that 

The mechanical system given by (2.1) can be rewritten in the following 
concise form: 

Mij + W(q)B = T, (2.4) 

where W(q) E IR1x3 is the regression vector given by 

W(q) = [q sat(iz) sat(q) exp (-FTq2) ] , (2.5) 
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and e E 1R3 is the vector of constant parameters defined as 

T e = [B Fe Fs] . (2.6) 

Since we are interested in compensating for friction, we will assume in the 
subsequent control designs that the coefficients B, Fe, and Fs are unknown 
constants; hence, e will be an unknown parameter vector. However, we will 
assume that the rotor inertia M and the Stribeck parameter FT are known; 
hence, W(q) will be known. 

Remark 2.2 Since the friction parameter FT does not appear linearly in 
(2.1), it is not obvious how to compensate for uncertainty associated with 
FT for the case of position tracking applications. Also, note that the sub­
sequent control strategies can easily be modified to cope with uncertainty 
associated with the parameter M; however, this minor extension has been 
ignored because it is deemed uninteresting. 

2.3 Control Designs for Reduced-Order Model 

In this section, we present the design of three adaptive controllers for the dy­
namics given by (2.4). The control objective is to achieve position/velocity 
tracking or regulation despite the uncertainty associated with the para­
meter vector e of (2.6). To this end, we define the position and velocity 
tracking error signals as follows: 

e(t) = qd(t) - q(t) e(t) = qd(t) - q(t), (2.7) 

where qd(t) is the desired position trajectory that must be constructed to 
ensure that qd(t), qd(t), qd(t) E .coo. Since the control objective is to be 
met under the constraint of parametric uncertainty, the controllers of this 
section will contain an adaptation law to estimate the unknown parameters. 
The difference between the actual and estimated parameters is defined by 

8(t) = e - B(t), (2.8) 

where 8(t) E 1R3 denotes the parameter estimation error vector, and B(t) E 

1R3 denotes the dynamic estimate of e. 
In addition, we define the filtered tracking error as 

r(t) = e(t) + ae(t) , (2.9) 

where a is a positive control gain. Note that the Laplace transform of (2.9) 
yields the following strictly proper, exponentially stable, transfer function 
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between r (t) and e (t): 
E(s) 1 
R(s) = s + ct' 

(2.10) 

where s denotes the Laplace transform variable. In addition, the definition 
of (2.9) will allow us to consider the second-order dynamic equation of (2.4) 
as a first-order equation, thereby simplifying the control design. To see this, 
we rewrite the dynamics of (2.4) in terms of the definition given in (2.9) 
as described below. First, we differentiate (2.9) with respect to time and 
multiply both sides by M to yield 

Mr = M (ijd + cte) - Mij, (2.11) 

where we have used the fact developed from (2.7) that e = ijd - ij. After 
utilizing the system dynamics of (2.4) to substitute for Mij into (2.11), we 
have 

!vIr = M(ijd + cte) + W(q)e - T. (2.12) 

The above first-order, nonlinear, ordinary differential equation represents 
the open-loop dynamics of r(t) and will be used as the foundation for the 
design of the first two adaptive controllers of this section. 

2.3.1 Standard Adaptive Control 

To formulate the standard adaptive controller, we use the structure of the 
open-loop dynamics of (2.12) to design the control input T (t) as follows: 

T = M(ijd + cte) + W(q)O + kr, (2.13) 

where k is a positive control gain and O(t) was defined in (2.8). Motivated by 
the subsequent Lyapunov-type stability analysis, the parameter estimate 
vector 0 (t) is updated using the adaptation algorithm, 

(2.14) 

where r E ~3x3 is a diagonal, positive-definite, adaptation gain matrix. 
After substituting the control input of (2.13) into (2.12), we obtain the 
following closed-loop dynamics for r(t): 

Mr = W(q)B - kr, (2.15) 

where B (t) was defined in (2.8). In addition, by differentiating (2.8) with re­
spect to time, we can use (2.14) to form the following closed-loop dynamics 
for the parameter estimation error: 

(2.16) 
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To analyze the stability of the closed-loop dynamics given by (2.15) and 
(2.16), we define the non-negative function 

(2.17) 

After taking the time derivative of (2.17), and then substituting for M r 
from (2.15), we obtain 

(2.18) 

After substituting (2.16) into (2.18) for B (t), we get 

(2.19) 

From (2.19) it is clear that Vet) is a nonpositive function; hence, we know 
that Vet) is either decreasing or constant. Since Vet) of (2.17) is a non­
negative function (i.e., Vet) is lower-bounded by zero), we can conclude that 
Vet) E Loo; hence, ret) E Loo and B(t) E Loo. Since r (t) E Loo , we can use 
(2.10) and Lemma A.8 in Appendix A to illustrate that e (t) ,e (t) E Loo; 
hence, owing to the boundedness of qd(t) and qd(t), we can use (2.7) to 
conclude that q(t), q(t) E Loo. Since B(t) E Loo and () is a constant vector, 
(2.8) can be used to show that B(t) E Loo. From the above boundedness 
statements and the fact that qd(t) is assumed bounded, the definition of 
(2.5) can be used to state that W(q) E Loo. It is now easy to see from (2.13) 
that the control input T(t) E Loo. The above information can be applied to 
(2.4) and (2.15) to illustrate that q(t), ret) E Loo. Thus, we have illustrated 
that all signals in the adaptive controller and the system remain bounded 
during closed-loop operation. 

We have already proved that ret), ret) E Loo. If we can now show that 
ret) E L2 , then Lemma A.3 in Appendix A can be exploited to prove that 
ret) goes to zero. To this end, we integrate with respect to time, both sides 
of (2.19) to produce 

(2.20) 

The evaluation of the integral on the right-hand side of (2.20) yields 

k 100 Ilr(t)112 dt ::; V (0) - V (00) ::; V (0) < 00, (2.21) 
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where we have used the fact that V(O) ~ V(oo) ~ 0 because V ::; O. The 
above inequality can be rewritten as follows: 

(2.22) 

which indicates from Definition A.l in Appendix A that r(t) E £2. We can 
now invoke Lemma A.3 to conclude that 

lim r(t) = O. 
t->oo 

(2.23) 

Finally, we can use (2.10) and (2.23) along with Lemma A.S in Appendix A 
to prove the global asymptotic stability of the position and velocity tracking 
errors in the sense that 

lim e(t), e(t) = O. 
t->oo 

(2.24) 

2.3.2 Modular Adaptive Control 

We now develop an adaptive position tracking controller that achieves con­
troller /update law modularity. Specifically, we first design a control law to 
achieve input-to-state stability (ISS) with the parameter estimation error 
B(t) treated as a disturbance input to the filtered tracking error dynam­
ics; hence, the controller guarantees closed-loop stability for any adaptive 
update law design, which ensures that the parameter estimates remain 
bounded. We then illustrate how the proposed control law yields global 
asymptotic position tracking for any parameter update law design, which 
also ensures that the prediction error is square integrable. 

In order to facilitate the modular control design, we first define the filtered 

regression vector as follows: 2 [30] 

(2.25) 

where [3 is a positive, constant design parameter. As in [19], the open-loop 
dynamics of (2.12) motivates us to design the control input T(t) as follows: 

T = M(qd + Qe) + W(q)e + kr 

(2.26) 

2See [21] for details on how to compute Wj (q) without the need for acceleration 
measurements. 
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where k is a positive control gain, and kn is a positive, nonlinear damping 
gain. To give some insight into the structure of the control input, we note 
that the terms on the first line of (2.26) are standard feedforward/feedback 
terms, while the terms on the second line are nonlinear damping functions 
injected to achieve the ISS property of the closed-loop system with respect 
to e(t). After substituting the control input of (2.26) into (2.12), we obtain 
the following closed-loop system: 

Mi" = -kr + W(q)e - kn IIW(q)112r - iWf(q) ~ -kn (iWf(q)~) 2 r. 

(2.27) 
In order to show that the controller achieves boundedness of r(t), we state 
the following theorem. 

Theorem 2.1 Given the closed-loop dynamics of (2.27), if e(t) E £00' 
then 

Ir(t)1 2 :s Ir(0)1 2exp (-~t) + k~n (Ilell: + 1), (2.28) 

where 11·1100 denotes the infinity norm; hence, r(t) E £00. 

Proof. To prove the ISS property of the proposed controller, we define the 
following non-negative function: 

(2.29) 

After taking the time derivative of (2.29) along the closed-loop expression 
given by (2.27), we get 

VI = -kr2+ [W(q)re-knIIW(q)112r2] 

(2.30) 

After applying the nonlinear damping argument given by Lemma A.10 in 
Appendix A to the bracketed terms of (2.30), we obtain the following upper 
bound on Vl(t): 

. 2k IIel12 
1 

1/;1 < --1/;1 + -- +-
- M kn kn ' 

(2.31) 

where (2.29) has been used. If e(t) E £00, by application of Lemma A.5 in 
Appendix A, the above inequality can be solved to yield 
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which, by the use of (2.29), can be rewritten as 

It is now easy to see the result of (2.28); thus, we can infer that r(t) E .coo. 
Note that, since r(t) E .coo, we can use (2.1O) and invoke Lemma A.8 in 
Appendix A to also illustrate that e(t), e(t) E .coo (and hence, q(t), q(t) E 

.coo, owing to the boundedness of qd(t) and qd(t)). 0 

Parameter Update Laws 

Since the ISS property is achieved by the controller, we are left with the 
design of adaptive update laws that ensure boundedness of the parameter 
estimates. To this end, we define the prediction error 

(2.34) 

where r f (t) E ~ is the filtered control input [21] defined as follows: 

(2.35) 

and Tf(t) E ~ is the estimated, filtered control input given by 

(2.36) 

with 13 being the same constant defined in (2.25), Wf(q} being defined in 
(2.25), and ((t) E ~ being an auxiliary filter variable defined as follows: 

((0) = O. (2.37) 

From (2.36) and (2.37), it is not difficult to see that the prediction error 
E(t) is a measurable signal. 

Upon substituting (2.4) into (2.35) for r(t), we obtain the following ex­
pression: 

if + f3rf = f3Mq + f3W(q)B. (2.38) 

Upon differentiating (2.36) with respect to time, and then utilizing (2.36) 
and (2.37) to eliminate the variable ((t), we obtain the following expression: 

ff +f3Tf = f3Mq + f3Wf(q)fJ + :t (Wf(q)fJ). (2.39) 

After subtracting (2.39) from (2.38), and utilizing (2.25) and (2.34), we get 

(2.40) 
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From the structure of (2.40), we can see that an unmeasurable representa­
tion for the prediction error € (t) can be defined as follows: 

(2.41) 

We are now in a position to design the adaptive update laws to estimate 
B. Specifically, we employ the following gradient and least-squares-type up­
date laws [19]: 

Gradient update law: 

Least-squares update law: 8= r(t)wJ(q)€, 
where t = -rWJ(q)Wf(q)r 

r(O) = rT(O) > O. 
(2.42) 

The adaptive update laws given by (2.42) not only ensure boundedness of 
the parameter estimation error but also guarantee that €(t) E C2. In order 
to delineate this fact, we state the following theorem. 

Theorem 2.2 The update laws given by (2.42) guarantee that 8(t) E Coo; 
furthermore, the proposed update laws guarantee that €(t) E C2. 

Proof. To prove this theorem, we utilize the following function: 

-T -1-
V2 = B r B. 

After taking the time derivative of V2(t) along (2.42), we obtain 

Gradient update law 

Least-squares update law. 

(2.43) 

(2.44) 

After substituting for 8 (t) from (2.42), utilizing (2.41) to substitute for 
€, and then simplifying the resulting expression, we obtain the following 
upper bound on V2(t): 

Gradient update law 
(2.45) 

Least-squares update law. 

For the gradient update law, r is a constant, positive-definite matrix; 
thus, V2(t) of (2.43) is a non-negative function. Since from (2.45) we know 
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V2(t) is nonpositive, we can infer that V2(t) is either decreasing or constant; 
hence, V2(t) E £00, which implies that 8(t) E £00. After integrating both 
sides of the first inequality in (2.45), and following a similar procedure as 
in (2.20)-(2.22), we can easily show that €(t) E £2. 

For the least-squares update law, we will first show that r-1 (t) in (2.43) 
is bounded. To this end, after applying the identity given by 

r-1 = _r-1rr-1 (2.46) 

to (2.42), we can show that the solution for r-1 (t) is given by 

r-1 (t) = r-1 (0) + lot WJ (q (a)) Wf (q (a)) da. (2.47) 

It is easy to see that WJ (q) Wf (q) is positive semidefinite, which implies 
that 

lot WJ (q (a)) Wf (q (a)) da > 0; (2.48) 

thus, it follows from (2.47) that r-1 (t) :::; r-1 (0). If r (0) is selected to 
be positive-definite and symmetric according to (2.42), then r-1 (0) is also 
positive-definite and symmetric. Therefore, it follows that both r-1 (t) and 
r (t) are positive-definite and symmetric. From (2.42), we know that r (t) 
is negative semidefinite; therefore, r (t) is always constant or decreasing, 
and it follows that r (t) E £00. Since r (t) E £00' V2 (t) is non-negative, 
and i2 (t) is nonpositive, we can infer that V2(t) E £00' which implies that 
B(t) E £00. Finally, after integrating both sides of the second inequality in 
(2.45), and again following a similar procedure as in (2.20)-(2.22), we can 
show that c(t) E £2. 0 

Composite Stability Analysis 

We are now in a position to perform a composite stability analysis for the 
closed-loop system given by (2.27) with the adaptive update laws given by 
(2.42). 

Theorem 2.3 The adaptive controller of (2.26) along with the update laws 
given by (2.42) ensures that all signals remain bounded during closed-loop 
operation; furthermore, it ensures global asymptotic tracking as illustrated 
by 

lim e(t), e(t) = o. 
t ..... oo 

(2.49) 

Proof. From the proof of Theorem 2.2, we know that 8 (t) ,e (t) E £00. 
Since e (t) E £00' we can apply Theorem 2.1 to show that r (t) E £00. 
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Since r (t) E £00' we can invoke Lemma A.8 in Appenclix A to show that 
e (t), e (t) E £00; therefore, it follows from (2.7) that q (t) ,q (t) E £00. 
Since q (t) E £00' we can show that Wf (q) E £00' and since 7J (t) E £00' 
we know from (2.41) that t(t) E £00. It is now easy to see from (2.42) 

that e (t) E £00. From the above boundedness statements, we use (2.27) to 
prove that r (t) E £00. Therefore, we have asserted that all signals remain 
bounded during closed-loop operation. 

In order to prove that lim ret) = 0, we consider the following variable 
t->oo 

transformation: 
1 

x=Mr-7Y'· (2.50) 

After taking the time derivative of x(t) along the closed-loop expression 
given by (2.27), substituting for E from (2.41), and then simplifying the 
resulting expression by the, use of (2.25), we obtain 

x = -kr - kn IIW(q)112 r - kn (~Wf(q) e) 2 r + € ~ -A(q)r + €, (2.51) 

where A(q) is a positive function. Using the relationship given by (2.50), 
we can rewrite (2.51) in terms of only x(t) and €(t) as follows: 

j; = - A~) x + C(q)€, (2.52) 

where C(q) is defined by 

(2.53) 

We now differentiate the non-negative expression ~x2 along (2.52) to obtain 

(2.54) 

We now let 

(2.55) 

and rewrite (2.54) as 
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Since y(t) ;::: 0, we can use (2.56) to produce the following upper bound for 
if(t): 

if ~ -(lY+(21IEII, (2.57) 

where the positive scalar constants3 (1 and (2 are defined as 

and (2.58) 

The solution of the differential inequality of (2.57) is given by 

y(t) ~ y(O)e-(lt + (2 lot e-(l(t-~) liE (~)II d~. (2.59) 

After utilizing Holder's inequality [33], we can rewrite (2.59) as follows: 

(2.60) 
After squaring both sides of (2.60) and integrating the resulting expression, 
we obtain 

rt ly(O") 12 dO" ~ [y(0)12 + 2d rt ( r e-(l("-~) liE (~)112 d~) dO". (2.61) 
Jo (1 (1 Jo Jo 

If we reverse the order of integration in (2.61), we have 

lot ly(0")12 dO" ~ IY~0:12 + 2(~~ lot e(l~ 1IE(~)112 (let e-(l"dO") d~ 

~ly(0)12 + 2d rt liE (~)112 ~d~. 
(1 (1 Jo (1 

(2.62) 
After utilizing the fact that c(t) E £2, we can use (2.62) to state that 

Ilylb ~ IY~0:12 + 2((f~ IIEI12 < 00, (2.63) 

where 11·112 denotes the £2 norm of a signal. From Definition A.l in Appen­
dix A, we know that the result given by (2.63) illustrates that y(t) E £2. 

3 Since we know all signals are bounded from Theorem 2.3, the constants (1 and (2 

exist. 
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Hence, from the definition presented in (2.55), we can see that x (t) E £2. 

Since x{t), €(t) E £2, we can state from (2.50) that r(t) E £2. Since 
r(t), r(t) E £00 and r(t) E £2, we can invoke Lemma A.3 in Appendix 
A to state that lim r{t) = 0; hence, we can use (2.1O) and Lemma A.8 in 

t-+oo 

Appendix A to show that lim e(t), e(t) = o. 0 
t-+oo 

2.3.3 Adaptive Setpoint Control 

Recall that the adaptive tracking controllers of Sections 2.3.1 and 2.3.2 
assumed perfect knowledge of the Stribeck parameter FT) which does not 
appear linearly in the model (see Remark 2.2). We will now design an 
adaptive position setpoint controller (Le., qd is now set to some constant) 
to compensate for uncertainty associated with all of the parameters in the 
friction model, including the Stribeck parameter FT. To this end, we begin 
by rewriting the mechanical system dynamics given by (2.1) as follows: 

(2.64) 

where 
Ws(q) = [-q - sat(q) ] E jR1x2 (2.65) 

and 
[ ]T 2 

(}s = B Fc E jR . (2.66) 

The structure of (2.64) and the subsequent stability analysis motivate us 
to design the control input as follows: 

T = -WsBs - kdq + kp(qd - q) + Fs sat(q) exp ( -FTq2) , (2.67) 

where kd, kp are positive control gains, and Bs{t) E jR2 and Fs(t) , FT{t) E jR 

denote the estimates of ¢, Fs , and FT , respectively, which are updated 
according to the following adaptation laws: 

(2.68) 

where r s E jR2x2 is a diagonal, positive-definite, adaptation gain matrix 
and 'Yo, 'Y1 are positive adaptation gains. After substituting (2.67) into 
the open-loop system of (2.64), adding and subtracting the term Fs sat(q) 

exp ( - FTq2 ), and then simplifying the resulting expression, we obtain the 
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following closed-loop system: 

Mij = Ws(q)Bs - kdq + kp(qd - q) - Fs sat(q) exp (-FTq2) 

(2.69) 

-Fssat(q) [exp(-FTq2) -exp (-FTq2)], 

where Bs(t) = es - Bs(t) and Fs(t) = Fs - Fs(t) denote the parameter 
estimation error terms. 

In order to examine the stability ofthe closed-loop system given by (2.69) 
along with the adaptive update laws of (2.68), we perform the following 
analysis. We define the non-negative function 

1 .2 1 2 1-T -1- 1 -2 1FS - 2 
V="2 Mq +"2 kp (qd-Q) +"2es r s eS+2'YoFs+"2'Y1FTl (2.70) 

where FT(t) = FT - iqt). After taking the time derivative of V(t) along 
(2.69) and (2.68), we obtain, after some simplifications 

V = -kdq2 - Fsqsat(q) [exp(-FTq2) - exp(-FTq2) + FTq2exp(-FTq2)] , 

(2.71) 
which can be rewritten as follows: 

V = -kdq2 - Fsq sat(q) exp( -FTq2) [exp( -FTl) - 1 + FTq2]. (2.72) 

After defining ( = 1 - FTq2 in (2.72), we have 

V = -kdq2 - Fsqsat(q)exp(-FTq2) [exp(( -1) - (j. (2.73) 

Since sat(q)q 2: 0 Vq(t) and exp(( - 1) 2: ( V((t), V(t) can be upper 
bounded as follows: 

(2.74) 

From (2.70) and (2.74), we can follow similar arguments as in Sections 
2.3.1 and 2.3.2 to show that q(t), q(t), Fs(t), FT(t) E L= and Bs(t) E L=. 
Since B, Fc, Fs, and FT are constant parameters, Fs(t), FT(t) E L= and 
Bs(t) E L=. Since the right-hand side of the equations in (2.67) and (2.68) . . 
contain only bounded quantities, we can assert that T(t),Fs (t),FT (t) E 

L= and Bs (t) E L=. Similarly, since the right-hand side of (2.64) contains 
only bounded quantities, we can say that ij(t) E L=. Thus, we can infer 
that all the signals remain bounded during closed-loop operation. 

After integrating both sides of the expression given by (2.74), and then 
proceeding as in (2.20)-(2.22), we have 

1= q2(CT)dCT :S JVk~) < 00, (2.75) 
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which, according to Definition A.I in Appendix A, indicates that q(t) E 

.c2. Since, q(t), q(t) E .coo, and q(t) E .c2, we can invoke Lemma A.3 in 
Appendix A to show that lim q(t) = O. Now, note that q(t) can also be 

t-+oo 
rewritten as 

q(t) = t dqd'(a) da + C, 
io a 

(2.76) 

where C is some constant. Since we have already shown that lim q(t) = 0, t-+oo 
we can use (2.76) to show that 

lim t dq
d' (a) da exists and is finite. 

t-+oo io a 

After differentiating the expression given by (2.69), we obtain 

where 

F~ (.) (FA '2) F- asat(q).. (FA '2) + s sat q exp - rq - s aq q exp - rq 

F asat(q) .. [ (F '2) (FA '2)] - s aq q exp - rq - exp - rq 

-Fssat(q) [-2Frqqexp(-Frq2) 

+( fr r q2 + 2Frqq) exp( - Frq2)] , 

asat(q) .. ] 
aq q E .coo. 

(2.77) 

(2.78) 

Since the right-hand side of (2.78) contains only bounded quantities, we 
can infer that 'ci (t) E .coo. Since Ii (t) E .coo, we can state that q(t) is 
uniformly continuous. Since q(t) is uniformly continuous, we can use (2.77) 
and Lemma A.2 in Appendix A to show that 

lim q(t) = O. t-+oo (2.79) 

Since lim q(t), q(t) t-+oo 0, we can now see from (2.69) and (2.65) that 

lim q(t) = qd. 0 t-+oo 
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Remark 2.3 Note that LaSalle's invariance principle [30J can be employed 
to illustrate asymptotic stability if the sat(·) function is defined to be the 
non-multivalued, discontinuous function defined in {2.2}. That is, we can 
find the laryest invariant set of {2.68} and {2.69} contained in the set 

(2.80) 

Specifically, from {2.74}, q = 0; hence, from {2.2}, the regression vector of 
{2.65} reduces to 

W(q)I<i=o = [ 0 o ] . (2.81) 

Since q = 0, the acceleration is also equal to zero (i.e., ij = 0). Therefore, 
we can use {2.69}, {2.2}, and {2.81} to show that 

(2.82) 

which means 
(2.83) 

We can now invoke LaSalle's principle to show that lim q (t) , e (t) = O. 
t-oo 

2.3.4 Experimental Evaluation 

Experimental Setup 

A schematic diagram of the experimental setup used to implement the con­
trollers is shown in Figure 2.1. The setup consisted of a 88 N-m switched re­
luctance motor (NSK Corp., model RS-081O) operating in torque-controlled 
mode. A metal disk weighing 11 lbs was attached to the rotor concentri­
cally. Friction was introduced via a block of Teflon held against the disk, as 
shown in Figure 2.1. The amount of friction could be varied by adjusting a 
vice arrangement. An integrally mounted resolver provided rotor position 
measurement. The resolver signal was converted to quadrature format by 
a resolver-to-digital converter mounted inside the driver unit. The resolu­
tion of the position sensor was 0.00234 deg. The rotor velocity signal was 
obtained by applying a standard backwards difference algorithm to the po­
sition signal with the resulting signal being filtered by a second-order digital 
filter. A Pentium 266 MHz PC running Qmotor provided the environment 
to write the control algorithm in the C programming language. 

The various parameters associated with the friction model were calcu­
lated using the following procedure. First, a sinusoidal torque with the 
amplitude selected to be more than the required static friction torque was 
applied to the motor. The inertia of the disk along with the rotor iner­
tia were determined using standard procedures. The rotor acceleration was 



www.manaraa.com

2.3 Control Designs for Reduced-Order Model 29 

Top View 

Side view 

10 lbs. weight 

Teflon Block 
SK motor 

FIGURE 2.1. Schematic diagram of the experimental setup. 

computed by applying a backwards difference algorithm to the velocity 
signal and then filtering the resulting signal using a second-order digital 
filter. The frictional torque was obtained by subtracting the inertial torque 
from the applied torque. The parameters of the friction model were then 
adjusted to fit the experimentally obtained profile of the friction torque. 
For the model given by (2.1), the numerical values of the parameters were 
determined to be 

M = 0.125 kg_m2 , B = 1.5 N-m-sec/rad, Fe = 3.50 N-m, 
Fs = 4.90 N-m, Fr = 0.1890 sec2 /rad2 . 

The saturation function in (2.1) was defined to be the function given in 
(2.2). 

Experimental Results 

Experiment 1: For comparison purposes, the standard, gradient update 
law-based adaptive controller given by (2.13) and (2.14) was implemented. 
The desired position trajectory was selected to be (see Figure 2.2) 

qd(t) = tan-1 (4sin(0.5t)) (1- exp(-0.Olt3)) rad. (2.84) 

The parameter estimates were initialized to 50 % of their nominal measured 
values (Le., B(O) = 0.50). The best tracking performance was achieved with 
the following control and adaptation gains: 

a = 110, ks = 14, r = diagi1.2. 0.8. l..'it 
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FIGURE 2.6. Estimate of the static friction coefficient. 
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FIGURE 2.7. Position setpoint error. 
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FIGURE 2.8. Parameter estimates for setpoint controller. 

The performance of the controller as quantified by the position tracking 
error is shown in Figure 2.3. The parameter estimates are shown in Figures 
2.4 to 2.6. 

Next, the modular adaptive controller of (2.26) with the least-squares 
update law given in (2.42) was implemented with 8(0) = 0.5B. The desired 
position trajectory was selected as in (2.84). The best tracking performance 
was achieved using the following control gains: 

a =40, ks = 30, 

with the adaptation gain matrix initialized to 

[ 
0.8 1.0 1.0 1 

r(0) = 1.0 1.8 1.0 
1.0 1.0 3.0 

(3 = 1, 

The position tracking error is shown Figure 2.3. The parameter estimates 
are shown in Figures 2.4-2.6. 

The experimental results shown in Figures 2.4-2.6 indicate that the least­
squares-type estimation rule promotes better transient performance than 
the standard gradient update law. The improved transient performance of 
the parameter update laws results in faster decay of the position tracking 
error for the least-squares based controller, as illustrated by Figure 2.3. 

Experiment 2: The setpoint controller of (2.67) along with the update 
laws given by (2.68) was implemented with 8(0) = 0.5B. The desired set-
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point was selected to be 
qd = 90 deg. 

The best regulation performance was achieved using the following gains: 

kp = 800, rs = diag{O.Ol,O.l}, 'Y1 = 0.08, 
kd = 55, 'Yo = 0.1. 

The position error and parameter estimates are shown in Figures 2.7, 2.8, 
respectively. The position setpoint error shown in Figure 2.7 clearly indi­
cates asymptotic regulation with a very small steady-state error. The pa­
rameter estimates, as shown by Figure 2.8, settle down to constant values 
after a brief transient period. 

2.4 Full-Order Friction Model 

A different friction model from the one presented in Section 2.2 will now be 
considered. Specifically, we will consider a second-order, SISO mechanical 
system with nonlinear load dynamics and a nonlinear, dynamic friction 
model. The mathematical model for this system is assumed to be of the 
form [9] 

M(j + BI;. + TL(q, 1;.) + X(I;.)z = r 

Z = I;. - 1(I;.)z, 

where the auxiliary functions X(I;.) and 1(1;.) are defined as follows: 

x(l;.) = 80 - 1(1;.)81 , 

1( ·) 11;.1 
q = g(l;.) , 

(2.85) 

(2.86) 

(2.87) 

(2.88) 

where q(t), I;.(t) , (j(t) represent the position, velocity, and acceleration, re­
spectively; z(t) denotes the unmeasumble internal friction state; M denotes 
the constant inertia of the system; B denotes the constant viscous friction 
coefficient; TL(q, 1;.) denotes a nonlinear load function dependent on the po­
sition and velocity; 80 ,81 are positive constant parameters used to weight 
how the friction dynamics enters the mechanical system; the function g(l;.) 
is used to describe the Stribeck effect; and ret) is the control input. 

The model given above accounts for stick-slip friction effects via a so­
called bristle model [16]. The bristle model was conceived to capture the 
stick-slip friction effects at the microscopic level. According to this model, 
the friction between the two interacting surfaces is assumed to be caused by 
a large number of bristles in the narrow interstices of the rubbing surfaces. 
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The state z(t) in (2.85) and (2.86) represents the average deflection of 
thousands of such bristles. Understandably, the state z(t) does not offer 
itself for direct measurement. 

The following assumptions are made regarding the model given in (2.85)­
(2.88). 

Assumption 1: The load function TL(q, q) E Loo if q(t), q(t) E Loo. 

Assumption 2: The Stribeck function g(q) is constructed such that (i) 
it ensures that f(q) E Loo if q(t), q(t) E Loo and (ii) 0 < g(q) < DO 
where Do is some positive constant [9J. It should be noted that since 
0< g(q) < Do, it can easily be shown that if Iz(O)1 :::; Do, then Iz(t)1 :::; 
Do Vt ~ 0 [9] (i.e., z(t) E Loo). 

Remark 2.4 An example of a function that has been proposed to describe 
the Stribeck effect [2, 31 j .is 

(2.89) 

where /30, /31, and /32 are positive constant parameters. 

2.5 Control Designs for Full-Order Model 

In this section, we present a class of partial-state feedback (PSFB), position­
tracking controllers for the friction model described in Section 2.4. The 
PSFB condition stems from the fact that the controllers will only require 
direct measurement of q (t) and q (t), while a filter and/or observer will 
generate an estimate for the unmeasurable friction state z (t). 

To facilitate the subsequent control designs, we redefine the filtered track­
ing error r(t) given in (2.9) as follows: 

r = e + £-1 {~KF (s) E (S)} , (2.90) 

where e(t) is the same tracking error defined in (2.7)4; E(s) = £{e(t)}, 
where £ denotes the Laplace transform operation; s denotes the Laplace 
transform variable; and KF (s) is a linear filter that is selected to ensure 
that the transfer function given by 

E(s) _ H(s) ~ s 
R( s) - - 82 + K F (8) 

(2.91) 

4 As in Section 2.3, it is assumed that the desired position trajectory qd(t) is con­

structed such that qd(t), qd(t), iid(t) E £00. 
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is strictly proper and exponentially stable. We also define the observation 
error for the unmeasurable friction state as follows: 

z(t) = z(t) - 2(t), (2.92) 

where 2 (t) represents the estimate of the state z (t). 

Remark 2.5 The filtered tracking error of {2.90} is defined in terms of 
the function KF(S) to facilitate the design of standard linear feedback laws 
for the mechanical dynamics of {2.85}. For example, in order to implement 
a proportional-derivative feedback law, the function KF(S) can be designed 
as follows: 

KF(S) = as ==::;.. r = e + ae, (2.93) 

where a is a positive control gain (note that this is the case of {2.9}}. 
Similarly, a proportianal-integral-derivative feedback law can be designed 
by defining KF(S) as follows: 

KF(S) = as + f3 ==::;.. r = e + ae + f31t e(r) dr, (2.94) 

where f3 is a positive control gain. 

2.5.1 Model-Based Control: Asymptotic Tracking 

First, a model-based observer/controller will be designed by assuming that 
all the parameters in the mechanical system given by (2.85)-(2.88) are ex­
actly known. To simplify the control development, we rewrite the dynamics 
given by (2.85) in terms of the filtered tracking error ret) as follows: 

Mf = w(q, q, t) + x(q)z - r, (2.95) 

where w(·) is an auxiliary measurable function defined as follows: 

The structure of open-loop dynamics of (2.95) motivates the design of the 
control input ret) as 

r = w(q, q, t) + X(q)2 + kr, (2.97) 

where k is a positive control gain. After substituting (2.97) into (2.95), we 
obtain the following closed-loop error system: 

Mf = -kr + X(q)z. (2.98) 
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To provide motivation for some of the terms injected during the subsequent 
observer design, we now conduct a preliminary stability analysis. To this 
end, we define the following non-negative function: 

1 2 
Vc = '2Mr . (2.99) 

After taking the time derivative of (2.99) along (2.98), we obtain the fol­
lowing expression for Vc ( t) : 

(2.100) 

Note that, whereas the first term on the right-hand side of (2.100) is non­
positive, the second term will have to be directly canceled by the injection 
of appropriate terms during construction of the observer. 

Now we turn our attention to the observer design. An obvious method of 
constructing an observer is to rewrite the dynamic equation governing the 
unmeasurable state in terms of the estimated state. For example, we can 
design an observer for z(t) by utilizing the structure of (2.86) and replacing 
all occurrences of z(t) with the estimate z(t) as shown below: 

z= q - J(q)z + x(q)r. (2.101) 

Note that the x(q)r term has been injected to compensate for the x(q)zr 
term in (2.100). To obtain the observation error dynamics, we take the time 
derivative of (2.92) and then substitute the expressions given by (2.86) and 
(2.101) as follows: 

z= - J(q)z - x(q)r. (2.102) 

The stability of the proposed observer/controller can be demonstrated 
by defining the following non-negative function: 

(2.103) 

where Vc(t) was defined earlier in (2.99). After taking the time derivative 
of (2.103), substituting the expressions given by (2.100) and (2.102), and 
then simplifying the resulting expression, we obtain 

(2.104) 

Since J(q) ~ 0, as illustrated by (2.88) and the assumptions on g(q) given 
in Section 2.4, we can upper bound V(t) as follows: 

. 2 
VA :s -kr . (2.105) 
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From (2.103) and (2.105), we know VA(t) E £00' which implies that ret), z(t) 
E £00' From (2.98), it is now easy to show that ret) E £00' Using the 
standard signal-chasing arguments shown in Section 2.3, we can prove the 
boundedness of all other signals during closed-loop operation. Furthermore, 
the form of (2.105) allows us to show that ret) E £2. With the above in­
formation, we can invoke Lemma A.3 in Appendix A to show that 

lim ret) = O. 
t .... oo 

(2.106) 

Now we can use (2.106), (2.91), and Lemma A.8 in Appendix A to show 
global asymptotic position and velocity tracking in the sense that 

lim e(t), e(t) = O. 
t-+oo 

(2.107) 

From (2.104), we can see that if a given position tracking application 
somehow ensured that I(i]) remained positive for all time, then we could 
use (2.103) and (2.104) to prove exponential convergence of the filtered 
tracking error and the observation error. Since exponential convergence is 
a desirable property, we will illustrate next how the structure of the me­
chanical model given in (2.85)-(2.88) can be exploited to design an observer 
which guarantees exponential convergence of ret) and z(t). 

2.5.2 Model-Based Control: Exponential Tracking 

An observer that exponentially estimates the state z(t) is given by 

AM. 
z =P- e;q, 

where pet) is an auxiliary variable that is updated according to 

(2.108) 

p= ell [-eop+ (-B+el+M:~)i]-TL(q,i])+T+X(i])r]. (2.109) 

While the appearance of most of the terms in (2.108) and (2.109) is moti­
vated by the structure of the mechanical model, the x(i])r term has been 
injected to cancel the x(i])zr term in (2.100). To formulate the observation 
error dynamics, we first take the time derivative of (2.108), multiply the 
resulting equation by el , and then substitute (2.109) for pet) to obtain 

el z= eli] + x(i])z - eoz + x(i])r. (2.110) 

After taking the time derivative of (2.92), multiplying the resulting equa­
tion by el , substituting (2.86) and (2.110), and simplifying the resulting 
expression, we finally obtain 

el z= -eoz - x(i])r. (2.111) 
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In order to prove the exponential stability of the closed-loop system 
formed by (2.98) and (2.111), we define the following non-negative function: 

(2.112) 

where Vc(t) was defined in (2.99). Note that VE(t) can be bounded as 
follows: 

(2.113) 

where x(t) E JR.2 and A1, A2 are positive bounding constants defined as 

(2.114) 

After taking the time derivative of (2.112) along (2.100) and (2.111), we 
get 

• 2-2 
VE = -kr - Boz . (2.115) 

Utilizing (2.115) and (2.113), an upper bound can be placed on VE (t) as 
shown below: 

(2.116) 

We can now apply Lemma AA in Appendix A to (2.116) to show that 

v: () v: (0) ( 2min{k,Bo}) 
E t ::; E exp A2 t. (2.117) 

After applying (2.113) to (2.117), we obtain the following upper bound for 
x (t): 

Ilx(t)ll::; ~llx(O)llexp ( mini:,Bo}t) , (2.118) 

which, according to the definition of (2.114), illustrates the global expo­
nential convergence of r (t) and z (t). Since r(t) is exponentially stable, we 
can invoke Lemma A.7 in Appendix A to prove the global exponential con­
vergence of e (t) and e (t). Note that it can also be easily shown that all 
other closed-loop signals remain bounded. 

Remark 2.6 The two model-based observer/controllers just presented have 
the drawback of assuming exact knowledge of all the parameters in the sys­
tem given by (2.85)-(2.88). In the following two sections, we present two 
adaptive PSFB observer/controllers that compensate for uncertainty in se­
lected parameters of the system model. 
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2.5.3 Adaptive Control: Case 1 

We design the first adaptive controller based on the assumption that all 
of the parameters, except those associated with the Stribeck function g(q) 
introduced in (2.88), are unknown. Specifically, we first parameterize the 
dynamics given by (2.95) and (2.96) as follows: 

(2.119) 

where the explicit definition of X(q) defined in (2.87) has been utilized, 
Wa(q, q) E ~lXp denotes a known regression matrix, and Ba E ~p is a 
unknown, constant vector containing the inertia, viscous friction, and load 
parameters.5 

The structure of (2.119) and the subsequent stability analysis motivates 
us to design the control input T(t) as follows: 

T = Wa(q, q)'ea + (00 - 1(q)fh) 2 + (00(0 - 1(q)01(1) + kr, (2.120) 

where k is a positive control gain, (O(t)'(l(t) are filter states defined be­
low, and Oa(t), Oo(t), and 01(t) are the dynamic estimates of the unknown 
parameters that are updated using the following adaptation laws: 

Oa=rwT(q,q)r, 00=I'0(2+(0)r, 01= -I'd2+ (1) 1(q)r, 
(2.121) 

with r E ~pxp being a diagonal, positive-definite, adaptation gain matrix, 
and 1'0,1'1 being positive adaptation gains. The unmeasurable state z(t) is 
now estimated by the following observer:6 

2= q - 1(q)2, (2.122) 

while the filter states (O(t),(l(t) are updated according to the following 
dynamic equations: 

(0 = - 1(q)(0 + r, (2.123) 

To obtain the observation error dynamics, we take the time derivative of 
(2.92), and then substitute the expressions given by (2.86) and (2.122) to 
produce 

Z= - 1(q)z. (2.124) 

5In formulating the Wa(q, q)6a term, we have assumed that the load function TL(q, q) 
introduced in (2.85) is linearly parameterizable, 

6Note that the structure of this observer is similar to the previous observer of (2.101), 

but without the term x(q)r. 
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After substituting the control input given by (2.120) into the open-loop 
system of (2.119), we get the following closed-loop filtered tracking error 
system: 

(2.125) 

where the parameter estimation errors are defined as follows: 

The following observations which motivate the design of the adaptive up­
date laws and the auxiliary filters can be made with regard to the form of 
the closed-loop equation given by (2.125). As will be seen in the subsequent 
stability analysis: (i) the update laws given in (2.121) compensate for the 
bracketed term in the first line of (2.125), and (ii) the filters defined in 
(2.123) compensate for the two terms on the second line of (2.125). 

We will now perform a composite stability analysis for the closed-loop ob­
server / controller system. Specifically, we define the following non-negative 
function: 

1 - 1 - 1 1 -2 1 1 -2 
+-Oar- Oa + --00 + --01 . 

2 2 "fo 2 "f1 

(2.127) 

After taking the time derivative of (2.127) along (2.121), (2.123), (2.124), 
(2.125), and (2.126), and then simplifying the resulting expression, we ob-
tain 

(2.128) 

Since 1(4) 2: 0, as illustrated by (2.88), and according to the assumptions 
on g(4) given in Assumption 1 in Section 2.4, we can upper bound VA1(t) 
as follows: 

• 2 
VAl:::; -kr . (2.129) 

Based on the form of (2.127) and (2.129), we can follow the same arguments 
described in Section 2.3 to show the boundedness of all closed-loop signals 
and that ret) E £2. Since we know ret), ret) E £= and ret) E £2, we can 
use Lemma A.3 in Appendix A to state that lim ret) = O. Finally, we can 

t ...... = 
apply Lemma A.8 in Appendix A to show that lim e(t), e(t) = O. 

t ...... = 
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2.5.4 Adaptive Control: Case 2 

We now synthesize an adaptive controller that compensates for parametric 
uncertainty associated only with the normal force variation in the Stribeck 
effect. That is, we will assume that f(i}) can be linearly parameterized and 
expressed as follows [10]: 

f(i}) = ~j,,(i}), (2.130) 

where f,,(i}) denotes a known function, and ~ is an unknown, positive, 
constant parameter. 

We begin by parameterizing the dynamics given by (2.95) as follows: 

MY. = w(q,i}, t) + (80 - ~j,,(q)8d Z - T, (2.131) 

where (2.87) and (2.130) have been utilized. The structure of (2.131) and 
the subsequent stability analysis motivates the design of the control input 
T(t) as follows: 

T = W + 80z - P;,j,,(i})81 (z - (,,) + kr, (2.132) 

where (,,(t) is a filter variable that is defined below, and P;,(t) represents 
the dynamic estimate of the unknown parameter ~, which is updated using 
the following rule: 

(2.133) 

with I" being a positive adaptation gain. The filter state (,,(t) is generated 
according to the following dynamic equation: 

. 80 80 . 
(" = - 81 (" - 81 r - 81 f,,(q)r. (2.134) 

The unmeasurable state z(t) is now estimated by the following observer:7 

" M. 
z = P - e;q, (2.135) 

where p( t) is an auxiliary variable having the following dynamics: 

p = :1 [-8oP + ( -B + 81 + M::) i} - TL(q, i}) + T + 80r]. (2.136) 

The observation error dynamics can be formulated from (2.92), (2.135), 
and (2.136) using a procedure similar to that in Section 2.5.2 to yield 

81 z= -80z - 80r. (2.137) 

7Note that the structure of this observer is similar to the previous observer of (2.108) 

and (2.109), except that it does utilize the function f(4} 
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To formulate the closed-loop expression for the filtered tracking error dy­
namics, we substitute the control input of (2.132) into (2.131) to obtain 

(2.138) 

where the parameter estimation error signal k (t) is defined as follows: 

k(t) = K, - k(t). (2.139) 

To analyze the stability of the closed-loop systems, we define the non­
negative function 

V IM 2 1 e -2 1 (- ;-)2 1 1 -2 
A2 = - r + - 1Z + -K, Z - '> + --K, . 

2 2 2 I-< 2'1-< 
(2.140) 

After taking the time derivative of VA2(t) along (2.139), (2.138), (2.137), 
(2.133), and (2.134), we have 

k 2 e -2 eo (- ;-)2 = - r - OZ - r;, e1 Z - '>1-< 
(2.141) 

~ -kr2 - eoz2 ~ -min{k,eo} Ilx112, 

where x(t) was previously defined in (2.114). From (2.140), (2.141), and 
Lemma A.6 in Appendix A, it is clear that all system signals are bounded 
and lim Ilx(t)11 = OJ hence, lim ret), z(t) = O. We can now use Lemma A.8 

t---+-oo t---P(X) 

in Appendix A to show that lim e(t), e(t) = O. 
t->oo 

2.5.5 Experimental Evaluation 

The same experimental setup discussed in Section 2.3.4 (see Figure 2.1) 
was used to evaluate the controllers presented in this section. The various 
parameters associated with the friction model were calculated using a pro­
cedure similar to that discussed in Section 2.3.4. For the model given by 
(2.85)-(2.88), the numerical values of the parameters were determined to 
be 

M = 0.125 kg_m2, B = 1.42 N-m-sec/rad, eo = 12 N-m/rad, 
e1 = 0.1 N-m-sec/rad, (30 = 3.24, (31 = 5.21, (32 = 3.00. 

(2.142) 
The desired position trajectory qd(t) was selected as in (2.84). Since there 
was no external load torque acting on the motor other than the friction 
torque, TL(q,q) in (2.85) was equal to zero. For the sake of brevity, only 
the experimental results for the model-based controller of Section 2.5.1 and 
the adaptive controller of Section 2.5.3 are presented. 
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Experiment 1: First, the model-based observer/controller represented by 
(2.97), (2.93), (2.108), and (2.109) was implemented. The best tracking 
performance was achieved with the control gains set to a = 80 and k = 4.0. 
The performance of the controller, as quantified by the position tracking 
error, is shown in Figure 2.9. 

Experiment 2: The adaptive controller of (2.120) and (2.93) was im­
plemented with the parameter estimates initialized to 50% of the nomi­
nal values given in (2.142) with the exception of the inertia parameter M 
which was assumed to be exactly known. The best tracking performance 
was achieved using the following control gains: 

a = 340, ke = 22, r = 1.5, 10 = 5, 11 = 0.02. 

The position tracking error is shown Figure 2.10, while the parameter es­
timates are shown in Figure 2.11. 

Experiment 3: For comparison purposes, we also evaluated a controller 
based on the reduced-order friction model described in Section 2.2 and given 
by (2.1). Specifically, we implemented the following model-based control 
law: 

T = M (iid + ae) + Bq + (Fe + Fa exp (-Frq2)) sgn(q) + kr, (2.143) 

where r(t) is defined by (2.93) and Fe, Fs were determined experimentally 
to be 3.24 N-m and 5.21 N-m, respectively. The best tracking performance 
was achieved using the following control gains, a = 110 and k = 14.0. 
The resulting position tracking error is shown Figure 2.12 (for comparison 
purposes, the tracking error of Experiment 1 has been replotted on the 
same scale). 

It is interesting to note from Figure 2.12 that the full-order, model-based 
controller of Experiment 1 outperformed the reduced-order, model-based 
controller of Experiment 3. Also, as indicated by Figure 2.10, the adaptive 
controller of Experiment 2 achieved about the same level of tracking per­
formance as the other two controllers, despite the uncertainty associated 
with the parameters B, 00, and 01 . 

2.6 Notes 

To capture low-velocity friction effects, several researchers, such as TUstin 
[31] and Hess and Soom [17], have proposed empirical models between 
friction and velocity to fit the Stribeck curve. In [7], Canudas de Wit et al. 
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FIGURE 2.11. Parameter estimates: adaptive controller. 
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FIGURE 2.12. Position tracking errors: (a) reduced-order, model-based controller 
and (b) full-order, model-based controller. 
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approximated the exponential relationship proposed in [31] by a linearly 
parametrized model. Rabinowicz [26] integrated the stick-slip motion into 
a friction model that takes into account the temporal phenomena of dwell 
time and lag time. An alternative approach, known as the state-variable 
model, was proposed in [13, 27, 28] to capture the effects of time delay 
associated with friction. For further information on similar work, the reader 
is referred to [5]. Many of these mathematical models were later given 
physical interpretations. For example, the bristle model utilized for control 
synthesis in Section 2.4 is the outcome of one such interpretation [16]. For 
an excellent and comprehensive review on the subject of friction modelling, 
the reader is referred to [1, 6]. 

Following the development of empirical mathematical models, several re­
searchers have used these models to design adaptive controllers that com­
pensate for parametric uncertainty. In [2], Armstrong-Helouvry explored 
the implications of the Stribeck effect on feedback control to stabilize the 
performance of the controller at low velocities. Later in [3], Armstrong­
Helouvry applied dimensional and perturbation analysis to solve a non­
linear, low-velocity friction control problem. In [34], Walrath designed an 
adaptive controller for airborne servo mechanism based on a first-order dy­
namic friction model. Friedland and Park [15] proposed an adaptive con­
trol scheme that entailed the use of an observer to estimate the kinetic 
friction coefficient. While in [7], Canudas de Wit et al. designed an adaptive 
controller for DC motor drives utilizing a friction model that was asym­
metric in angular velocity, [8] addressed the problem of adaptive friction 
compensation for robot manipulators operating at low velocities based on 
the assumption of a linearly parameterized model for the Stribeck effect. 
Later, Canudas de Wit et al. designed a model-based [9] and an adap­
tive controller [10] to achieve position/velocity tracking for a second-order 
linear system in the presence of nonlinear, dynamic friction effects. The 
control schemes presented in [9, 10] required the feedback portion of the 
controller to satisfy a strictly positive real (SPR) condition that precluded 
the use of a PID feedback law. In [32], Vedagarbha et al. exploited the 
structure of the friction dynamics proposed in [9] to design several dif­
ferent closed-loop observer/control strategies. Other related work can be 
found in [4, 18, 22, 23, 29, 35]. 

With respect to the above literature review, we first note that the con­
trollers presented in Section 2.5 were designed to eliminate the SPR con­
dition required in [9, 10]; hence, many different types of feedback laws 
are possible in the feedback portion of the controller (see Remark 2.5). 
In addition, relaxation of the SPR condition endows the adaptive control 
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laws of Sections 2.5.3 and 2.5.4 with the ability to compensate for un­
certain nonlinear load dynamics in a straightforward manner. Finally, the 
observer/controller proposed in [10] to deal with parametric uncertainty 
associated with f(q) neglected the observer transients during the stabil­
ity analysis. On the other hand, the adaptive controller of Section 2.5.4 
given by (2.132) utilizes the nonlinear observer given by (2.134) actively to 
compensate for the observer transients. 
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3 
Full-State Feedback Tracking 
Controllers 

3.1 Introduction 

This chapter will concentrate on the full-state feedback (FSFB) (Le., po­
sition and velocity are available for feedback) control problem for general, 
nonlinear, MIMO, rigid mechanical systems with parametric uncertainty. 
Specifically, we will emphasize the adaptive control solution to this prob­
lem. First (as in Chapter 2), we will present, owing to its popularity and 
relative simplicity, the standard adaptive controller of Slotine and Li [27] 
in its original MIMO version. The idea is for this adaptive controller to 
serve as a benchmark for the subsequent MIMO, FSFB controllers of this 
chapter and the output feedback controllers of Chapter 4. 

In the standard adaptive controller of [27], the regression matrix depends 
on the actual position and velocity; hence, the regression matrix must be 
calculated on-line for use in the feedforward portion of the control input 
signal. Since the regression matrix often contains many nonlinear terms, 
its on-line computation substantially increases the burden on the real-time 
implementation of the adaptive control scheme. To reduce on-line computa­
tion, Sadegh and Horowitz [26] proposed the so-called desired compensation 
adaptation law (DCAL). The DCAL controller is composed of (i) a non­
linear feedforward term consisting of a desired regression matrix and the 
parameter update law, (ii) a linear feedback term, and (iii) a nonlinear feed­
back term that is used to compensate for the difference between the actual 
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and desired regression matrices. In this scheme, the nonlinear functions ap­
pearing in the regression matrix are computed using the desired position, 
velocity, and acceleration trajectories; hence, the feedforward control term 
can usually be precalculated off-line (i.e., provided the desired trajectory is 
known a priori). In this chapter, we reexamine the original DCAL controller 
proposed in [26]. By employing a slightly different structure for the nonlin­
ear /linear feedback terms and making use of the nonlinear damping design 
tool (see Lemma A.lO in Appendix A), we formulate a class of DCAL-type 
control laws that includes adaptive controllers as well as some nonadaptive 
extensions. 

The DCAL and standard adaptive controllers are founded on a tradi­
tional Lyapunov design approach that does not offer much freedom in the 
selection of the parameter update laws. As shown in Chapter 2, this problem 
for nonlinear, SISO, rigid mechanical systems was overcome by employing 
the estimation-based design of [10], which provides a certain degree of mod­
ularity in the design of the controller and update law. Unfortunately, the 
modular adaptive control framework of [10] cannot be directly applied to 
nonlinear, MIMO mechanical systems owing to the inertia matrix-related 
couplings in the system dynamics. However, the work presented in [10] 
does provide some theoretical ammunition that can be used to achieve 
controller/update law modularity for MIMO mechanical systems, as will 
be illustrated in Section 3.6. 

3.2 System Model 

The dynamic model of an n degrees-of-freedom, rigid mechanical system 
is assumed to be given by the following nonlinear, ordinary differential 
equation: 

(3.1) 

where q(t), q(t), if(t) E ~n denote the position, velocity, and acceleration 
vectors, respectively; M(q) E ~nxn represents the system's inertia matrix; 
Vm(q,q) E ~nxn represents the centripetal-Coriolis matrix; G(q) E ~n 

denotes the gravity effects; Fd E ~nxn is the constant, diagonal, positive­
definite, viscous friction coefficient matrix; and T(t) E ~n represents the 
control input vector. We will assume that the left-hand side of (3.1) is first­
order differentiable with respect to time and is bounded provided q (t), 
q (t), and if (t) are bounded. 
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The dynamic model of (3.1) is assumed to possess the following standard 
properties [11, 16] that will be used in the control design and stability 
analysis. 

Property 3.1 The inertia matrix M(q) is symmetric and positive-definite, 
and satisfies the following inequalities: 

\:j~ E ffi.n , 

(3.2) 
where ml, m2 are known, positive bounding constants, 11·11 denotes 
the standard Euclidean norm, and 11·lli2 represents the matrix-induced 
two norm [30]. 

Property 3.2 The inertia and centripetal-Coriolis matrices satisfy the fol­
lowing skew-symmetric relationship: 

(3.3) 

where M(q) denotes the time derivative of the inertia matrix. 

Property 3.3 The left-hand side of the dynamic equation of (3.1) can be 
linearly parameterized as 

M(q)ij + Vm(q, q)q + G(q) + Fdq = Y(q, q, ij)e, (3.4) 

where e E ffi.P contains the constant system parameters, and Y(.) E 

ffi.nxp is the regression matrix, which contains known functions of the 
signals q (t), q (t), and ij (t). 

3.3 Problem Statement 

The primary control objective is to design the control input r(t) such that 
q(t) --+ qd(t) as t --+ 00 with the assumption of FSFB. The closeness of 
this control objective is quantified by the position tracking error e(t) E ffi.n 

defined as follows: 
e(t) = qd(t) - q(t). (3.5) 

Hence, from the definition of (3.5), the control objective is to make e(t) --+ 0 
as t --+ 00. We will assume the desired motion trajectory is specified such 
that qd(t) and its first two time derivatives are all bounded functions of 
time. Since the control objective is to be met under the constraint of para­
metric uncertainty, the controllers of this chapter will contain an adaptation 



www.manaraa.com

56 3. Full-State Feedback Tracking Controllers 

law to estimate the unknown parameters. The difference between the actual 
and estimated parameters is defined by 

8(t) = B - 8(t), (3.6) 

where 8(t) E IRP denotes the parameter estimation error vector, and 8(t) E 

IRP denotes the dynamic estimate of the unknown, constant, parameter 
vector B defined in (3.4). 

In addition, a filtered tracking error denoted by r(t) E IRn is defined as 
follows: 

r(t) = e(t) + ae(t), (3.7) 

where a E IRnxn is a diagonal, positive-definite, control gain matrix. Note 
that this n-dimensional, filtered tracking error has the same properties 
as the one-dimensional, filtered tracking error defined in Section 2.3 in 
Chapter 2. We now proceed as in Section 2.3 to rewrite the dynamics of 
(3.1) in terms ofthe definition given in (3.7) as described below. First, we 
differentiate (3.7) with respect to time, and multiply both sides by M(q) 
to yield 

M(q)r = M(q) (ijd + ae) - M(q)ij. (3.8) 

After utilizing the system dynamics of (3.1) to substitute for M(q)ij into 
(3.8), we have 

M(q)r 

M(q) (ijd + ae) + Vm(q, q)(qd + ae) + G(q) 
+Fdq - Vm(q, q)r - T, 

(3.9) 

where (3.5) and (3.7) were used to rewrite the velocity as q = qd + ae - r 
in the term Vm(q, q)q. Property 3.4 can now be exploited to rewrite (3.9) 
as 

M(q)r = -Vm(q, q)r + Y;,(q, q, t)B - T, (3.10) 

where the linear parametrization YsOB is defined as 

Y;,(.)B = M(q) (ijd + ae) + Vm(q, q)(qd + ae) + G(q) + Fdq. (3.11) 

The above first-order, nonlinear, ordinary differential equation represents 
the open-loop dynamics of r(t), and will be used as the foundation for the 
design of the adaptive controllers throughout this chapter. 
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3.4 Standard Adaptive Control 

In this section, for the purpose of clarity, we review the well-known, model­
based, MIMO adaptive controller of Slotine and Li [27J in the context of 
Lyapunov-type design and analysis techniques used throughout the book. 

3.4.1 Controller Formulation 

Based on the form of the open-loop dynamics of (3.10), the control input 
T (t) is designed as follows: [27J 

T = YsOB + Kr, (3.12) 

where K E JR.nxn is a diagonal, positive-definite, control gain matrix, and 
B (t) was defined in (3.6). Based on the subsequent Lyapunov-type stability 
analysis, the parameter estimate vector B (t) is updated using the adapta­
tion algorithm 

(3.13) 

where r E JR.Pxp is a diagonal, positive-definite, adaptation gain matrix. 
Substituting (3.12) into (3.10) produces the closed-loop dynamics for r(t) 
as shown below: 

M(q)r = -Vm(q,q)r - Kr + YsOB, (3.14) 

where the definition of (3.6) was used. In addition, by differentiating (3.6) 
with respect to time, we can use (3.13) to form the following closed-loop 
dynamics for the parameter estimation error: 

(3.15) 

3.4.2 Stability Result 

The structure of the error systems of (3.14) and (3.15) yields a stability 
result for the position tracking error as delineated by the following theorem. 

Theorem 3.1 The control law of (3.12) and the parameter estimation up­
date law of (3.13) ensure the global asymptotic convergence of the position 
and velocity tracking error as illustrated by 

lim e(t), e(t) = o. 
t-+co 

(3.16) 
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Proof. To prove the above result, we define the non-negative function 

(3.17) 

Differentiating (3.17) with respect to time yields 

v = ~rT M(q)r + rT M(q)r + 7l r-1 B . (3.18) 

After substituting the closed-loop dynamics of (3.14) into (3.18), we obtain 

Applying Property 3.2 to the bracketed term and substituting (3.15) into 
the parenthesized term allows (3.19) to be simplified as follows: 

. T 2 
V = -r Kr ~ -Amin {K} Ilrll , (3.20) 

where Amin {.} denotes the minimum eigenvalue of a matrix, and Lemma 
A.9 in Appendix A has been utilized. 

According to the form of (3.20), we know that V(t) is either decreasing or 
constant. Since V(t) of (3.17) is a non-negative function (i.e., V(t) is lower 
bounded by zero), we can conclude that V(t) E Loo; hence, r(t) E Loo and 
O(t) E Loo. Since r(t) E Coo, we can utilize Lemma A.8 in Appendix A to 
show that e(t), e(t) E Loo; hence, owing to the boundedness of qd(t) and 
cjd(t), we can use (3.5) to conclude that q(t), cj(t) E Loo. Since O(t) E Loo 
and () is a constant vector, (3.6) can be used to show that e(t) E Loo. 
From the above boundedness statements and the fact that ijd(t) is assumed 
bounded, the definition of (3.11) can be used to state that Ys (.) E Coo. 
It is now easy to see from (3.12) that the control input T (t) E Loo. The 
above information along with the fact that M-1(q) exists and is bounded 
can be applied to (3.1) and (3.14) to illustrate that ij(t) , r(t) E Loo. Thus, 
we have illustrated that all signals in the adaptive controller and in the 
system remain bounded during closed-loop operation. Furthermore, the 
form of (3.20) allows us to show that r(t) E L2 (see (2.20) to (2.22)). With 
the above information, we can now invoke Lemma A.3 in Appendix A to 
conclude that 

lim r(t) = O. t--+oo (3.21) 

Finally, according to (3.21) and (3.7), Lemma A.8 in Appendix A can be 
utilized to obtain the result of (3.16). 0 
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3.5 Desired Trajectory-Based Adaptive Control 

Recall that the model-based adaptive controller of Section 3.4 formulates 
the regression matrix in terms of the actual position q (t) and actual veloc­
ity q(t) (see (3.11) and (3.12)). Thus, it has the following implementation 
problems: (i) it carries the burden of requiring the on-line computation 
of an n x p nonlinear matrix and (ii) a significant portion of the feedfor­
ward terms of the control law may be contaminated with sensor noise from 
q (t) and q (t). Fortunately, this implementation issue can be overcome by 
formulating the regression matrix as a function of the predefined, desired 
position, velocity, and acceleration (i.e., the DeAL control scheme), hence 
allowing its off-line calculation. In this section, we reexamine the original 
DeAL controller of [26] by initially presenting a simplified stability analy­
sis to illustrate asymptotic position and velocity tracking for a DeAL-like 
controller. The analysis is simplified by employing a slightly different struc­
ture for the nonlinear feedback term than that originally proposed in [26], 
and by making use of the nonlinear damping design tool of Lemma A.lO 
in Appendix A. By further exploiting the nonlinear damping tool, we also 
show that a DeAL-like controller with only linear feedback can guaran­
tee semiglobal asymptotic tracking. Finally, we show that the reformulated 
DeAL control structure can easily be utilized to examine some nonadaptive 
control extensions. 

3.5.1 Controller Formulation 

Before we present the controller formulation, let us use (3.4) to define a 
so-called desired linear parameterization as shown below: 

(3.22) 

where Yd(qd, qd, iid) E lR.nxp is the desired regression matrix which is a 
function only of the desired position, velocity, and acceleration. Based on 
the above definition and the open-loop dynamics of (3.10), we now design 
the control input T (t) as follows: 

(3.23) 

where K p , K v , Ke E lR.nxn are diagonal, positive-definite, control gain ma­
trices, and VR (t) is an auxiliary nonlinear term yet to be determined. The 
auxiliary VR (t) term will be used to compensate for the mismatch between 
the desired regression matrix Yd(·) and the actual regression matrix Ys(.) 
defined in (3.11). The parameter estimate vector B (t) is generated by the 
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dynamic update law 

(3.24) 

where r E jRPxp is the diagonal, positive-definite, adaptation gain matrix. 
The substitution of (3.23) into (3.10) yields the closed-loop dynamics for 

r(t) as follows: 

where the variable Y (-) E jRn is introduced to quantify the difference be­
tween the following linear parameterizations: 

(3.26) 

As in the previous section, we can use the time derivative of (3.6) along 
with (3.24) to form the closed-loop dynamics for the parameter estimation 
error as follows: 

- T B= -rYd (·)r. (3.27) 

Remark 3.1 It can be shown that the norm of the variable yo, defined 
in (3.26), can be upper bounded as (see [11, 26j for proof) 

(3.28) 

where x(t) E jR2n is defined as 

(3.29) 

and p( x) is a positive function defined by 

(3.30) 

In (3.30), (1, (2 denote positive bounding constants that depend only on 
the norm of the control gain matrix a of (3.1), the bounding constant m2 

defined in (3.2), and the bounds on the desired trajectory. The above bound 
will be exploited to obtain the stability results delineated in the following. 

3.5.2 Stability Results 

We now describe two stability results for the position tracking performance 
based on different choices of the control gain matrix Ke and the nonlinear 
term VR in the control input of (3.23). 
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Theorem 3.2 The control law of (3.23) and the parameter estimation up­
date law of (3.24) ensure the global asymptotic convergence of the position 
and velocity tracking error, as illustrated by 

lim e(t), e(t) = o. 
t-+oo 

(3.31) 

This result holds provided that Ke and VR (t) in (3.23) are selected as fol-
lows: 

Ke =0, (3.32) 

where p(x) was defined in (3.30), and kn E lR is a nonlinear damping gain 
selected according to 

1 
kn > A3' 

with A3 being a positive constant defined as 

Proof. We begin by defining the following non-negative function: 

1 TIT 1-T -1-
V = 2"r M(q)r + 2"e Kpe + 2"0 r o. 

(3.33) 

(3.34) 

(3.35) 

Note that in comparison to (3.17), an additional term, !eT Kpe, has been 
included in (3.35). The need for this extra term will become clear later in 
the analysis. From the above definition, it is not difficult to see that V (t) 
can be bounded as 

where x (t) was defined in (3.29), z (t) E lR2n+p is defined as 

and the positive bounding constants AI, A2 are defined by 

A1 = ~min{m1'Amin{Kp}'Amin{r-1}}, 

A2 = ~ max {m2' Amax {Kp} , Amax {r-1}} , 

(3.36) 

(3.37) 

(3.38) 

with m1, m2 being the bounding constants given in (3.2). Note that Amax {.} 
denotes the maximum eigenvalue of a matrix. 

The differentiation of (3.35) with respect to time results in 

(3.39) 
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Following the same procedure as in the proof of Theorem 3.1, we can sub­
stitute the closed-loop dynamics of (3.25) and (3.27) into (3.39) to get 

where Property 3.2 has been used. In order to substitute for e (t) in the 
last term in (3.40), we will use the fact, derived from (3.7), that 

e = -O!e + r. (3.41) 

After substituting (3.41) into (3.40), and making use of Lemma A.9 in 
Appendix A, we can place an upper bound on V (t) as follows: 

(3.42) 

Using the definitions of (3.37) and (3.34), we see that the right-hand side 
of (3.42) can be upper bounded as 

V:S -A311x1l2 - Amin{Ke} IIrl12 + Ilrlliifii- rT VR. (3.43) 

After substituting (3.28) and (3.32) into (3.43), we have 

V :S -A311x112 + [p Ilxllllrll - knP211r1l2] . (3.44) 

Since the bracketed term in (3.44) forms a nonlinear damping pair, we can 
apply Lemma A.10 in Appendix A to further upper bound V (t) as 

(3.45) 

If the nonlinear damping gain kn is selected such that kn > 13 , (3.45) can 
be rewritten as 

(3.46) 

where (3.29) has been used, and (3 is some positive constant that approaches 
A3 as kn is increased. The proof of Theorem 3.1 can now be followed to 
illustrate the boundedness of all closed-loop signals and the result of (3.31). 
o 
Remark 3.2 The introduction of the term ~eT Kpe in the definition of 
V (t) of (3.35) is motivated by the need to obtain a negative IIxl12 term 
in V(t) (i.e., -A311x112 in (3.44}). This term is then used to dominate the 
positive IIxl12 term that arises from the application of the nonlinear damping 
argument to the bracketed term of (3.44) (i.e., the k~ IIxl12 term in (3.45}). 
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Theorem 3.3 The control law of {3.23} and the parameter estimation up­
date law of {3.24} ensure the semiglobal asymptotic convergence of the po­
sition and velocity tracking errors as illustrated by 

lion e(t),e(t) == O. 
t-HXl 

(3.47) 

This result is valid provided that Ke and VR (t) are now chosen as follows: 

VR == 0, (3.48) 

where (1, (2 were defined in {3. 3D}, and kn is selected according to 

1 (A2 2) kn > A3 Al liz (0) II + 1 , (3.49) 

with A3, z(t), and AI, A2 being defined in {3.34}, {3.37}, and {3.38}, respec­
tively. 

Proof. The proof of this theorem makes use of the same non-negative 
function given by (3.35). The proofs, however, slightly diverge as described 
below. 

After substituting (3.28), (3.30), and (3.48) into (3.43), we obtain 

V:S -A311x112 + [(lllxllllrll- knd IIrl12] + [(21IxI121Ir ll- knd IIrl12] . 
(3.50) 

The application of Lemma A.10 in Appendix A to the bracketed terms will 
produce 

V:S -A311x112 + 11~~2 + 11~~4, (3.51) 

which can be rewritten as 

(3.52) 

The sign of the upper bound on V (t) is determined by the bracketed term 
of (3.52), which must be positive for one to conclude the negative semidef­
initeness of V (t). That is, we must have 

(3.53) 

for V (t) to be negative semidefinite. From (3.36), a sufficient condition for 
(3.53) can be derived as follows: 

(3.54) 
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hence, the analysis to this point can be sUIllIDarized as 

for 
V(t) 

kn>T+1, (3.55) 

where f3 is some positive constant. From (3.55), we know that since V(t) ::; 
o \It E [0,00), V(t) is decreasing or constant \:It E [0,00). Therefore, a 
sufficient condition for (3.55) is given by 

for k > V(O) +1. 
n '>"1 ' (3.56) 

or by (3.36), we have a sufficient condition for (3.56), as follows: 

for '>"2 2 
kn > '>"1 Ilz(O)11 + 1, (3.57) 

where (3.29) has been utilized. The arguments used in the proof of Theorem 
3.1 can now be followed to illustrate the boundedness of all closed-loop 
signals and the result of (3.47). 0 

Remark 3.3 Prom {3.49}, we can see that the control gain kn can be in­
creased to cover any set of initial conditions; therefore, the stability result 
of Theorem 3.3 is referred to as semiglobal. 

Remark 3.4 It is interesting to see how different choices for part of the 
feedback portion of the control law {3.23} {i.e., the last two terms on the 
right-hand side of {3.23}} can produce slightly different stability results. 
Notice from {3.32} that the control law of Theorem 3.2 is a DCAL-like 
controller with nonlinear feedback that achieves the global convergence of 
the tracking errors. On the other hand, the control law that results from 
the selection of {3.32} in Theorem 3.3 is computationally simpler in the 
sense that it is a DCAL-like controller with linear feedback; however, this 
controller produces only a semiglobal convergence. 
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FIGURE 3.1. Block diagram of the experimental setup. 

3.5.3 Experimental Results 

The two DCAL-like control schemes described above were implemented on 
a two-link, direct-drive, rigid planar robot manipulator built by Integrated 
Motion, Inc. (IMI) [7]. This robot is a torque-controlled system that utilizes 
special-purpose electronic hardware to enable the implementation of torque 
control input algorithms. Specifically, the robot features links that are di­
rectly actuated by switched-reluctance motors that are controlled through 
Nippon Seiko K. K. (NSK) drives [14]. The WinMotor control environment 
was used to write the control algorithm in the C programming language. 
See Appendix D for a description of the C code used to implement the 
DCAL control algorithms. A functional diagram of the experimental setup 
is shown in Figure 3.1. As provided by the manufacturer, the two-link ma­
nipulator has the following dynamic model [7]: 

[ ~~ ] = 
[ Pl + 2P3C2 

P2 + P3C2 
P2 + P3C2 ] [ ?l ] 

P2 q2 

[ -P382Q2 - P382(Ql + Q2) ] [ :~ ] (3.58) + . 0 P3 82Ql 

+ [ f~l 0 ] [ :~ ] , fd2 

where Pl = 3.473 kg-m2, P2 = 0.193 kg_m2, P3 = 0.242 kg_m2, fdl = 5.3 N­
m-sec, fd2 = 1.1 N-m-sec, C2 denotes COS(Q2), and 82 denotes sin(q2). Based 
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on (3.4) and (3.58), the unknown parameter vector e can be constructed 
as 

e = [PI P2 P3 f dl 
T 

fd2] . (3.59) 

The experiment was performed using the following desired position tra­
jectories: 

( ) = [ 40.11 sin(t) (1 - exp (-0.3t3)) ] d 
qd t 68.75sin(t) (l-exp(-0.3t3)) ego (3.60) 

Note that the exponential term in (3.60) was included to ensure that 
qd(O) = qd(O) = qd(O) = 0. After several experimental runs, it was found 
that the nonlinear feedback DeAL controller given by (3.23), (3.24), and 
(3.32) achieved its best tracking performance with the following set of gains: 

a = diag {180, 70} , Kv = diag {70, 50} , Kp = diag {I, I} , 
kn = 10-4, (1 = 70, (2 = 60, r = diag {7, 0.12, 0.2, 30, 5}. 

For the linear feedback DeAL controller given by (3.23), (3.24), and (3.48), 
the set of gains that gave the best tracking performance was 

a = diag {480, 90} , Kv = diag {35, 25} , Ke = diag {35, 25} , 
Kp = diag{l, I}, r = diag{4,0.1,0.1, 20, 15}. 

For both controllers, the initial values of the parameter update law of (3.24) 
were set to zero (i.e., e(O) = 0) while a trapezoidal algorithm was used to 
compute the integral. A standard backwards difference algorithm applied 
to the po~ition measurement q (t) was utilized to generate the required 
velocity signal q (t). The sampling time for all experiments was 200 J1sec. 

The experimental results are shown in Figures 3.2-3.7. Figure 3.2 through 
3.4 illustrate the link position tracking errors, torque control inputs, and 
parameter estimates for the nonlinear feedback DeAL controller. In Figures 
3.5-3.7, the same plots are shown for the linear feedback DeAL controller. 
As can be seen from the experimental results, the linear feedback DeAL 
produced tracking errors of about the same magnitude as the nonlinear 
feedback scheme while maintaining the same level of torque inputs. There­
fore, one could postulate that the nonlinear feedback term is not required 
for DeAL-like control implementations. This fact may be specially attrac­
tive in applications where it is deemed that the feedback portion of the 
control law should be executed as quickly as possible. 

3.5.4 Nonadaptive Extensions 

Instead of utilizing the dynamic update law of (3.24) to estimate the system 
parameters on-line, one can use a constant parameter estimate. Depending 
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on the choice of the constant parameter estimate, different position tracking 
stability results will be achieved. The following two corollaries describe 
three cases for the selection of the fixed parameter estimate vector: (i) 
constant, best guess estimates of the actual parameters; (ii) the parameter 
estimates are set to zero; and (iii) the constant parameter estimates exactly 
match the actual parameter values. 

Corollary 3.1 (Constant Best Guess Parameter Estimate) Let Bin 
(3.23) contain constant, best guess estimates of the system parameters, and 
Ke and VR be chosen such that 

vR = 0, (3.61) 

where E, kn are positive nonlinear damping gains, (1, (2 were defined in 
(3.30), and (3 is a positive bounding constant defined as 1 

(3.62) 

If kn is selected according to 

kn > A~ (~~ Ilx (0)112 + ~:; + 1) , (3.63) 

where x (t) ,A3 were defined in (3.29) and (3.34), respectively, f3 is some 
positive constant, and AI, A2 are defined as 

then the position tracking error is semiglobal uniformly ultimately bounded 
(SGUUB) in the sense that 

Ile(t)11 :::; A2 Ilx (0)11 2 exp (-~t) + A2E (1- exp (-~t)). (3.65) 
Al A2 AIf3 A2 

Proof. We define a non-negative function of the form 

1 TIT 
V ="2r M(q)r +"2e kpe, 

which can be bounded as 

(3.66) 

(3.67) 

IThe bounding constant (3 will depend only on the bounds on the desired trajectory 

and on the magnitude of the difference between the constant, best guess parameter 

estimates and the actual parameters. 
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where x was defined in (3.29) and >'1, >'2 were defined in (3.64). The proof 
of Theorem 3.2 can be followed to form an upper bound on time derivative 
of V (t) as 

After substituting (3.61), (3.28), and (3.62) into (3.68), we obtain 

V ~ ->'3I1xI12 + [(1 IIxil IIril - knd IIrll2] 

+ [(2I1xIl2 IIrll - knd IIrll2] + [(3 IIril - ~~ IIr1l2] . 
(3.69) 

Applying Lemma A.lO in Appendix A to the bracketed terms produces 

(3.70) 

which can be rewritten as 

From (3.71), it is clear that 

V ~ -[3 IIxll2 + € for kn > ;3 (1 + IIx(t)II2) , (3.72) 

where [3 is some positive constant that approaches >'3 as kn is increased. 
After utilizing (3.67), a new upper bound can be placed on V (t) of (3.72) 
as follows: 

V ~ -! V + € for kn > ;3 (1 + IIx(t) 112) . (3.73) 

We can now invoke Lemma A.5 in Appendix A along with (3.67) and (3.29) 
to conclude that 

lIe(t)II ~ IIx(t)II ~ 

(3.74) 
from which the result of (3.65) follows directly. 0 
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Remark 3.5 The SGUUB tracking result given by {3.74} can be illumi­
nated by writing the steady state bound on IIx(t)1I as 

lim Ilx(t)1I = J ~2(3E . 
t ..... oo /\1 

(3.75) 

Prom {3.75}, it is clear that the steady-state value of x(t); and hence, the 
steady-state bound for the position tracking error e(t), can be made arbi­
trarily small by decreasing the value of the gain E. 

Remark 3.6 Corollary 3.1 includes the case where e = 0. That is, even 
if there is no feed forward compensation in the control law, the SGUUB 
tracking result of {3.65} remains valid {note that now {3.62} must be written 
as IIYdBl1 ::; (3)' With e = 0, the control law is a simple linear controller as 
proposed in [4, 18, 19, 20j. 

Corollary 3.2 (Exact Parameter Knowledge) Provided that e = Band 
K e , VR (t), and kn are selected as in Theorem 3.2, the position tracking er­
ror is semiglobal exponentially stable in the sense that 2 

lIe(t)1I ::; /¥; Ilx (0)11 exp (- 2~2 t) , (3.76) 

where (3 is some positive constant. 

Proof. The proof follows directly from the proof of Corollary 3.1 by re­
moving the last bracketed term in (3.69). D 

Remark 3.7 It is easy to show that the controllers of Corollaries 3.1 and 
3.2 can be redesigned with VR of {3.32} to yield global position tracking {see 
[5} for related work}. 

3.6 Control/ Adaptation Law Modularity 

In this section, the modular adaptive control design of Section 2.3.2 in 
Chapter 2 is extended to MIMO mechanical systems. As in Chapter 2, 
we first design the control law to ensure the ISS property with respect to 
the parameter estimation error, hence guaranteeing closed-loop stability 
for any update law design that ensures the boundedness of the parameter 
estimates. We then show that the control law produces global asymptotic 

2This stability result is similar to that of references [8, 31]. 
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position tracking for any adaptive update law design that also satisfies the 
following sufficient conditions: (i) the prediction error is square integrable, 
and (ii) the estimated inertia matrix is positive-definite. 

3.6.1 Input-to-State Stability Result 

Before we initiate the controller formulation, let us first define the filtered 
regression matrix [15] Yf(q, q) E IRnxp as3 

Yf (q(O), q(O)) = 0, (3.77) 

where yo is the regression matrix defined in (3.4), and (3 is a positive, 
constant design parameter. We also define the measurable prediction error 
c(t) E IRn as follows: 

(3.78) 

where the filtered torque Tf(t) E IRn is defined by 

Tf(O) = 0, (3.79) 

with T (t) being defined in (3.1). 
One of the main objectives of the control design is to achieve ISS with 

respect to the disturbance input O(t) [10]. Based on this objective, the form 
of (3.10), and the subsequent analysis, we will utilize the following control 
law: 

(3.80) 

where K E IRnxn is a diagonal, positive-definite, control gain matrix; kn is a 
positive nonlinear damping gain; M(q), Vm(q, q) represent the estimates of 
the inertia and centripetal-Coriolis matrices, respectively; and 1';, (.) , Yf (.) 
were defined in (3.11) and (3.77), respectively. To clarify the somewhat 
unusual structure of the control law (3.80), we note that the terms inside 
the brackets have been introduced to cancel similar terms in the subsequent 
stability analysis, while the norm-squared terms are nonlinear damping 
functions injected to achieve the ISS property of the closed-loop system 

3See [I1J for details on how to compute Yf(-) without the need for acceleration 
measurements. 
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with respect to e(t). By substituting (3.80) into (3.10), we can form the 
closed-loop error system for r(t) as follows: 

(3.81) 

We now state a theorem regarding the ISS property of (3.81) with respect 
to e(t). 

Theorem 3.4 Given the closed-loop error system of (3.81), if e(t) E 

£=[0, tj), then r(t) 6 £=[0, tj) where tj denotes the final time. 

Proof. We start by defining the non-negative function: 

1 
V = -:tT M(q)r. (3.82) 

After taking the time derivative of (3.82) along (3.81), we can obtain the 
following upper bound on V (t): 

V:S -Amin {K} IIrl12 + [llYsllllrllllell- kn IIYs11211r112] 

+ [11~Yj ~11"r"- kn II~Yj ~1121Ir,,2] (3.83) 

+ [II (it -Vrn) rll"r,,- kn II ( it -Vrn) rI121Ir"2]. 

After applying Lemma A.lO in Appendix A to the bracketed pairs of (3.83), 
we have 

(3.84) 

which can be further upper bounded, by the use of (3.2) and (3.82), as 
follows: 

. 1 11- 112 2 V(t) :s -AV(t) + kn e(t) + kn ' (3.85) 
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where A = 2Amin {K}. After solving the differential inequality of (3.85), 
m2 

we have 

(3.86) 

Hence, from (3.86), (3.2), and (3.17), we have 

which proves the theorem. 0 

Remark 3.8 Since Theorem 3.4 states that ret) E .coo [0, tf), we can ap­
ply Lemma A.8 in Appendix A to (3.7) to show that e(t),e(t) E .coo[O,tf); 

hence, q(t), q(t) E .coo [0, tf) owing to the assumed boundedness on qd(t),ild(t). 

3.6.2 Position Tracking Result 

The control law (3.80) guarantees the boundedness of the system states 
independent of the adaptation algorithm. In other words, it permits some 
flexibility in the design of the parameter update law as long as the bounded­
ness condition on B(t) is satisfied. We now turn our attention to developing 
specific technical conditions on the update law that lead to boundedness 
of all closed-loop signals and position tracking. 

Theorem 3.5 Given the control law (3.80) and any update law, denoted by 

e (q, q, e), that ensures e( t) E .coo [O,t f), we can state that (i) all signals are 
bounded during closed-loop operation on t E [0,00), and (ii) if the update 

law also ensures that c(t) E .c2[0,tf), then 

lim e(t), e(t) = 0, t-+oo (3.88) 

provided M(q) remains positive-definite and K of (3.80) is selected as K = 
kIn where k is a positive constant and In is the n x n identity matrix. 

Proof. (Part (i)) Since e(t) E .coo [0, tf), we know from Theorem 3.4 and 
Remark 3.8 that ret), q(t), q(t) E .coo [0, tf); hence, Yf (q, q) E .coo [0, tf). 
Since e(t) E .coo[O,tf) and Yf (q,q) E .coo[O,tf), we can state from (3.78) 

that c(t) E .coo [0, tf). Since e (t) is a function of q(t), q(t), and e(t), we know 
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that e (t) E £(X)[O, tf). From the previous boundedness statements, we can 
see from (3.81) and (3.80) that r(t), -ret) E £(X)[O, tf), and therefore, (j(t) E 

£(X)[O,tf) from (3.1) and (3.2). Thus, we have shown that all closed-loop 
signals are bounded on [0, t f). As in [10], the bounds are dependent only 
on the initial conditions, control gains, and the desired motion trajectory 
(i.e., not dependent on t f); hence, this independence of time proves that t f 
can be set to 00. 0 

Proof. (Part (ii)) We start by noting from (3.4) and (3.11) that 

Y (q, q, (j) 0 = Ys (q, q, t) 0 - M(q)r - Vm (q, q) r, (3.89) 

where M(q) = M(q) - M(q) and Vm (q, q) = Vm (q, q) - Vm (q, q). With 
the intent of writing the term YsO in terms of c:(t), we can use (3.78), the 
time derivative of (3,,6), and the relationships given by (3.77) and (3.89) to 
show that 

1. 
-c: + c: 
(3 

(3.90) 

We can now utilize the last line in (3.90) to obtain the following expression 
for YsO : 

- 1 - - 1 ~ 
YsO = 7i + c: + M(q)r + Vm (q, q) r + ~Yf 0 . (3.91) 

After substituting the right-hand side of (3.91) into (3.81), we have 

A A ~ 1 ~ 
M(q)r = -A(q, q, 0, 0, t)r + ~t; + c:- M (q)r, (3.92) 

where the positive function A (.) E ffi. is defined as 

Similar to the analysis of the modular adaptive, friction compensation 
controller of Section 2.3.2, we now define the following variable transfor-
mation: 

A 1 
x = M(q)r - ~c:. (3.94) 
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After taking the time derivative of (3.94) and substituting (3.92) into the 
resulting expression, we obtain 

±=-AOr+E. (3.95) 

By utilizing (3.94), the above expression for ± (t) can be rewritten as follows: 

± = -AM-Ix + BE, (3.96) 

where the matrix B 0 E ffi-nxn is defined as 

. ~ ~ 1 ~ -1 
B(q, q, e, e, t) = In - ~AM . (3.97) 

After differentiating ~xT x along (3.96), we obtain4 

(3.98) 

:S -AAmin {M-l} IIxl1 2 + IIBllioo IIEllllxl1 , 

where Lemma A.9 in Appendix A has been utilized. 
We now let 

(3.99) 

and rewrite (3.98) as 

(3.100) 

Since y(t) 2: 0, we can use (3.100) to produce the following upper bound 
on y(t): 

(3.101) 

where the positive constants5 (1 and (2 are defined as 

and (3.102) 

From this point on, the same derivations described in (2.59) to (2.63) in 
Chapter 2 can be followed to show (3.88). 0 

4Note that if M(q) is positive-definite, we know M- 1 (q) is also positive-definite. 
5 Since we know all signals are bounded from the proof of Part (i), the constants (1 

and (2 exist. 
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Remark 3.9 A typical parameter adaptation algorithm that satisfies the 
conditions stated in Theorem 3.5 (i.e., 8(t) E £= and c(t) E £2) is the 
least-squares estimator given by 

~ rYJc 
B= ----:;:'---~ 

1 + ,tr { Yf rYJ} , 
(3.103) 

where r(t) E jRPxp is a time-varying, symmetric matrix;, is a non-negative 
constant; and tr {.} denotes the trace of a matrix. The reader is referred 
to Section 2.3.2 in Chapter 2 for the proof that illustrates that 8 (t) E £= 
and c (t) E £2 . Note that if, = 0 in (3.103), we obtain the standard, 
unnormalized least-squares estimator. 

Remark 3.10 In order to satisfy the condition on the positive-definiteness 
of M(q) stated in Part (ii) of Theorem 3.5, a projection-type algorithm (see 
[1, 12] for examples) must be incorporated into the design of 8(t). 

3.6.3 Experimental Results 

The performance of the control law (3.80) combined with the unnormalized 
least-squares estimator (i.e., (3.103) with, = 0) (hereinafter denoted as LS 
controller) was evaluated on the 1M1, two-link, direct-drive, planar robot 
described in Section 3.5.3. A Pentium 166 MHz PC running Qmotor pro­
vided the environment to write the control algorithm in the C programming 
language. 

For comparison purposes, the adaptive controller of Section 3.4 given 
by (3.12) and (3.13), which utilizes a filtered tracking error-based, gradient 
update law, was also evaluated (hereinafter denoted as GR controller). The 
desired position trajectories were selected as follows: 

( ) = [ 40.11 sin(2t) (1 - exp (-0.3t3)) ] d 
qd t 68.75 sin(2t) (1 _ exp (-0.3t3)) ego (3.104) 

A standard backwards difference algorithm applied to the position mea­
surements and then passed through a digital low-pass filter was used to 
generate the velocity signals. The update laws given in (3.103) and (3.13) 
were initialized to zero, while a trapezoidal algorithm was utilized to com­
pute the integrals. The sampling period for the LS controller was 400 JLsec 
while the GR controller was run at 150 JLsec6 . All control parameters were 

6 Becuase of its relative simplicity, the GR algorithm can be run at a faster sampling 

period than the LS algorithm. Since a faster sampling period will generally improve 
an algorithm's performance, this experimental comparison is much fairer to the GR 
algorithm. 
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tuned by trial-and-error until the best position tracking performance was 
achieved. For the LS controller, the control gains and the initial values for 
the time-varying, adaptation matrix r(t) that resulted in the best tracking 
performance were 

(3 = 23, a = diag{51.5,49.0}, K = diag {70, 26}, kn = 1e-4 , 

0.5 0.25 0.275 0.5 0.125 
0.0175 0.0263 0.0175 0.0175 0.088 

r(O) = 0.042 0.045 0.036 0.03 0.012 
0.153 0.144 0.288 0.099 0.09 
0.242 0.033 0.055 0.01767 0.22 

(3.105) 
For the GR controller, the set of control and adaptation gains that resulted 
in the best tracking performance were 

a = diag {40, 23} , K = diag {75, 33} , r = diag {8.0, 0.1, 0.2,7.0, 2.0} . 
(3.106) 

The experimental results are shown in Figures 3.8-3.11. Figures 3.8(a) and 
3.8(b) illustrate the link 1 position tracking error for the LS and GR con­
trollers, respectively, while Figures 3.9(a) and 3.9(b) show the link 2 posi­
tion tracking error. Figures 3.10(a) and 3.10(b) depict the parameter esti­
mates for the LS and GR controllers, respectively. In Figures 3.11(a) and 
3.11(b), we have included the control inputs for links 1 and 2, respectively, 
of the LS controller, while Figures 3.11(c) and 3.118(d) contain the same 
signals for the GR controller. From these figures, we observe the faster pa­
rameter adaptation of the LS controller; and hence, the improved transient 
performance of the tracking error signals. We note that the improved track­
ing/parameter adaptation performance of the LS controller was obtained 
at the expense of only slightly larger control torques in comparison to those 
of the GR controller. 

3.6.4 Discussion of Results 

Since the condition on the positive-definiteness of M(q) required in Part 
(ii) of Theorem 3.5 is only a sufficient condition for achieving asymptotic 
position tracking with the LS controller, it comes as no surprise that the 
above experimental results were obtained without utilizing a projection­
type algorithm for e (t), as discussed in Remark 3.10. Furthermore, since the 
requirement that K = kIn is also only a sufficient condition for achieving 
asymptotic position tracking with the LS controller, it also comes as no 
surprise that the experimental results were obtained without satisfying this 
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condition (see (3.105)). We also note that no care was taken during the 
tuning procedure to ensure that r (0) of (3.105) was positive-definite or 
symmetric. 

The experimental results indicate that an improvement in the transient 
response of the tracking performance can be obtained through the use of 
the LS controller. Note that this improvement was also detected in the 
experimental results of Section 2.3.4. This behavior is due in part to the 
indirect influence the matrix r(O) has on the system's transient perfor­
mance. Specifically, if higher values were utilized for the elements of r(O), 
we observed that the parameter estimates greatly overshoot their steady­
state values, thus causing the transient tracking errors to be larger. On 
the other hand, if smaller values were used, the parameter estimates took 
longer to converge, thus causing the tracking errors to have a larger settling 
time. We note that owing to the 5 x 5 dimension and coupled nature of r(O), 
it is not easy to tune its elements such that a critically damped behavior 
is obtained for all the parameter estimates. However, the fact that r(O) 
provides some means of indirectly controlling the system's transient per­
formance in the LS controller has been shown to constitute an advantage 
over the GR controller. 

As stated in the previous section, the control/adaptation gains and r(O) 
were selected by trial-and-error to achieve the best tracking performance 
for the desired trajectory signal given by (3.104). That is, we found that 
the controller param.eters can be tuned to obtain good position tracking 
performance by monitoring the changes in the position tracking errors and 
then adjusting the gains in between runs. Although the gains in (3.106) and 
(3.105) work for different desired trajectory signals that are reasonable (i.e., 
signals that limit the desired acceleration to within the capability of the 
motor drive system), a small amount of retuning has to be done to achieve 
the best position tracking performance for these different trajectories. 

3.7 Notes 

Some representative work related to adaptive FSFB controllers applicable 
to MIMO mechanical systems can be found in [2,3,6,9, 17, 21, 24, 28, 32], 
while a class of DeAL FSFB controllers can be found in [22J. Most of 
the above mentioned results share the characteristic of utilizing standard, 
gradient-type, adaptation schemes. With the goal of overcoming the slow 
parameter convergence of gradient-type update laws, Lozano Leal et al. 
[13J utilized previous passivity-based adaptive control designs to construct 
a modified least-squares update law with the position/velocity tracking er-
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ror as the input. As time goes to infinity, the parameter estimates in this 
modified least-squares update law converge to the parameter estimates gen­
erated by a standard, least-squares update law. A modified least-squares 
update law based on the position/velocity tracking error was also pro­
posed by Sadegh and Horowitz [25] in the design of an exponentially stable 
DCAL-type controller. This exponential tracking result was predicated on 
the assumption that the desired regression matrix satisfies a semi persis­
tency of excitation condition; furthermore, the modified least-squares up­
date law requires the calculation of a matrix dependent on the excitation 
condition. In [27], Slotine and Li developed a composite adaptive controller 
by constructing the parameter update law as the composite sum of a least­
squares update law driven by the prediction error and a modified gradient 
update law driven by the position/velocity tracking error (Le., the gradient 
update law is modified because it uses the same time-varying, adaptation 
gain as the least-squares update law). As compared to the standard per­
sistency of excitation condition, the composite adaptive controller requires 
a weaker excitation condition (i.e., the infinite integral condition) for pa­
rameter convergence; however, this algorithm still utilizes a very specific 
choice for the adaptive update law. In [29], Tang and Arteaga developed 
an adaptive controller that included the standard, gradient update law; the 
composite adaptation update law; and an averaging gradient update law 
as special cases. 

Modular estimation-based adaptive control approaches were reported by 
Queiroz et al. [23] and Middleton and Goodwin [15]. Roughly speaking, 
in [15], the adaptive computed torque controller of Craig et al. [3] was 
augmented with additional terms that allowed the closed-loop error sys­
tem to be written as a stable, linear, strictly-proper transfer function with 
the position tracking error as the output and a prediction error-related 
term as the input. This input-output relationship facilitated the dual ob­
jectives of position tracking and controller/update law modularity in the 
sense that any parameter update law could be used as long as its design 
ensured that (i) the parameter estimates remained bounded, (ii) the pre­
diction error was square integrable, and (iii) the estimated inertia matrix 
was positive-definite (i.e., a projection-type algorithm is required in the 
parameter update law). We note that in contrast to the design of [15], the 
modular adaptive controller of Section 3.6 does not need the estimated in­
ertia matrix to be positive-definite to guarantee boundedness of the system 
signals, but only to prove position tracking (see Theorems 3.4 and 3.5). 
Moreover, the control law (see (3.80)) does not require the online calcula-
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tion of the inverse of the estimated inertia matrix, as is the case for the 
controller of [15]. 
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4 
Output Feedback Thacking 
Controllers 

4.1 Introduction 

All the position tracking controllers presented in Chapter 3 required full­
state feedback (FSFB). That is, the control implementation requires the 
measurement of the position and velocity of the mechanical system. Since 
the cost of implementing a FSFB controller for achieving position tracking 
would typically include the cost of motion sensors, this chapter addresses 
the problem of position tracking under the constraint of minimizing the 
sensor count (i.e., elimination of velocity measurements). Hence, we are 
motivated to investigate means of constructing velocity signal surrogates 
for use in closed-loop, position tracking control strategies, i.e., output feed­
back (OFB) controllers. A standard approach for removing velocity mea­
surements is to apply the so-called backwards difference algorithm to the 
position measurements. Even though this method of eliminating velocity 
may provide reasonable performance, the use of this discrete-time veloc­
ity approximation is not satisfying from a theoretical viewpoint since the 
dynamics of the backwards difference algorithm are normally not included 
during the closed-loop stability analysis. 

An alternate approach illustrated in Chapter 2 for SISO systems that 
contains a complete mathematical development suggests the use of a non­
linear observer to produce an estimate of the unmeasurable velocity signal. 
Often this observer contains dynamics that attempt to mimic the behavior 
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of the mechanical system to a certain extent (i.e., model-based observers). 
Since, in general, the separation principle [19] does not hold for nonlinear 
systems, a more complex procedure is required to analyze the closed-loop 
stability of the observer-controller system. To this end, the role of the ve­
locity observer is not merely to provide a velocity estimate but to ensure 
closed-loop stability. Analogously, the controller also plays a role in the ac­
curate estimation of velocity. That is, the design of the composite observer­
controller system is based on a coupled set of equations that describe the 
observation error dynamics and the position tracking error dynamics. 

A drawback of the observer-based approach is that an accurate model of 
the mechanical system is required to guarantee the stability of the obser­
vation error and the position tracking error. As mentioned in Chapter 3, 
although the structure of the mechanical system dynamic model is fairly 
well defined, the physical parameters representing the mass, inertia, and 
friction effects are often not precisely known. Therefore, an alternative, 
model-independent method is sometimes needed to generate a velocity­
related signal from only position measurements. Heuristically, this method, 
often referred to as a high-gain observer, attempts to provide a continuous­
time, approximate derivative of the position signal. That is, a linear, high­
pass-filter-like structure is used to approximate the behavior of a perfect 
differentiator over a range of frequencies. A crucial point is that the filter 
dynamics can be explicitly included in the analysis along with the position 
tracking error dynamics to deliver the desired closed-loop stability result. 

A limitation that exists in most OFB tracking controllers, observer or 
filter-based, is the semiglobal nature of the stability result (Le., a control 
gain has to be made sufficiently large to guarantee the desired stability 
result for a given set of initial conditions). Ideally, it would be desirable to 
recover the global stability results achieved with most of the FSFB designs 
of Chapter 3, despite having only OFB. A solution to this challenging 
problem can be accomplished by utilizing a velocity-generating filter with 
a more complex structure and a nonquadratic Lyapunov function that is 
softer l than the standard, quadratic Lyapunov function. 

Based on the above discussion, this chapter presents three solutions to the 
OFB tracking control problem. The first result is a model-based observer­
controller that guarantees the semiglobal exponential stabilization of the 
velocity observation error and the position tracking error. An interesting 
aspect of this result is that the observer-controller design and analysis is 

IThe word softer is used to illustrate the fact that if V (x) = f(x), where f(x) is 
some radially unbounded, non-negative function, then f(x) ::; x2 . 
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presented from an observed integrator backstepping [22] perspective. The 
second result is a linear filter-based, adaptive controller that ensures semi­
global asymptotic position tracking while compensating for unknown sys­
tem parameters. Finally, a nonlinear filter-based, adaptive control is devel­
oped that produces global asymptotic position tracking. 

4.2 Problem Statement 

In this chapter, we will consider the same nonlinear dynamic model de­
scribed in Section 3.2. However, in addition to the model properties listed in 
Section 3.2, we will make use in this chapter of the following supplemental 
properties. 

Property 4.1: The centripetal-Coriolis matrix of (3.1) satisfies the fol­
lowing relationship: [27] 

(4.1) 

Property 4.2 The norm of the centripetal-Coriolis and gravity terms of 
(3.1) can be upper bounded as follows [23]: 

(4.2) 

where (cl, (g are positive bounding constants, and 11·llioo denotes the 
matrix-induced infinity norm [30]. 

The primary control objective of this chapter is to design the control 
input T(t) such that q(t) ~ qd(t) as t ~ 00 with the constraint that only 
position measurements (Le., q(t)) are available. As in Chapter 3, we define 
the position tracking error e( t) E Rn as 

e(t) = qd(t) - q(t). (4.3) 

We will assume the desired motion trajectory is specified such that qd(t) 
and its first three time derivatives are all bounded functions of time.2 In 
particular, we assume that 

(4.4) 

where (d2 is a known, positive bounding constant. 

2The controller presented in Section 4.3 will however not require the boundedness of 
'ci d (t). 
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4.3 Model-Based Observer/Control 

In this section, the OFB control problem is tackled by designing a model­
based velocity observer/control algorithm. Using as a starting point, the 
observer originally presented by Nicosia and Tomei in [27], the control in­
put is designed based on the observed integrator backstepping technique 
[22]. Since the backstepping approach is used for the control synthesis, 
the observer/controller developed in this section can be extended to rigid 
mechanical systems that include the actuator dynamics (e.g., electrical dy­
namics and joint flexibilities3 ). 

Since velocity measurements (i.e., q(t)) are assumed to be unavailable, 
we will estimate this quantity with a model-based velocity observer. To 
quantify the difference between the actual and observed velocities, we define 

the velocity observation error q (t)E lRn as follows: 

q= q- ij, (4.5) 

where ij (t)E lRn denotes the observed velocity. In addition, to simplify the 
development of the control input, we define an observed filtered tracking 
error signal, denoted by f(t) E lRn , as follows: 

(4.6) 

where a E lR is a positive control gain. The expression for f (t) is similar to 
the filtered tracking error r (t) defined in (3.7), but with the actual velocity 
replaced by the observed velocity. 

4.3.1 Velocity Observer Formulation 

The model-based velocity observer has the following form [27]: 

ij= y + koq, y(O) = -koq(O) (4.7) 

and 

iJ = M-1 (q) (7 -Vm(q,~) ~ -G(q) - Fd ~) , (4.8) 

where q(t)E lRn is the position observation error denoted as 

q = q - ij, (4.9) 

3 See [25] for such extensions. 



www.manaraa.com

4.3 Model-Based Observer/Control 91 

yet) E Rn is an auxiliary variable, and ka is a positive control gain. To 
facilitate the subsequent Lyapunov-type stability analysis, the control gain 
ka is defined as follows: 

where a is the same control gain defined in (4.6), kl is an additional positive 
control gain, kn is a positive nonlinear damping gain, and ml,(cl,(d2 are 
the bounding constants defined in (3.2), (4.2), and (4.4), respectively. Note 
that (4.8) is basically the system model of (3.1) with q (t) replaced by 

ij (t). That is, the observer is designed with the intent of mimicking the 
system dynamics. The form of (4.7) and (4.8), in particular the auxiliary 
variable y (t), allows the observer to be implemented without the need to 
measure velocity. The selection of the initial condition shown in (4.7) (i.e., 

yeO) = -kaij(O) or ij (0)= 0) is motivated by the subsequent stability 
analysis. 

To give some insight into the design of the above observer, we now de­
velop the observation error dynamics. We begin by writing the velocity 
observer in a single equation format. This is done by differentiating (4.7) 
with respect to time, premultiplying both sides of the resulting expression 
by M(q), and substituting iJ (t) of (4.8) to produce 

.. " 

M(q) ij +Vm(q, ij) ij +G(q) + Fd ij -kaM(q) ij= T. (4.11) 

Subtracting (4.11) from (3.1) yields the following observer error system: 

.. .. 
M(q) ij +Vm(q,q)q - Vm(q,ij) ij +Fd ij +kaM(q) ij= O. (4.12) 

With the intent of preparing the error dynamics of (4.12) to enable the 
use of (3.3) during the stability analysis, we add and subtract the term 

Vm(q,q) ij to (4.12), and then apply Property 4.1 and (4.5) to obtain 

.. . .. 

M(q) ij= -Vm(q,q) ij -Vm(q,ij) ij -Fd ij -kaM(q) ij. (4.13) 

To analyze the stability of the above observer error dynamics, we use the 
following non-negative function: 

1 .T . 
Va = "2 ij M(q) ij . (4.14) 

The time derivative of Va(t) along (4.13) is given by 

Va = -l (Vm(q,§) + Fd + kaM(q)) q, (4.15) 
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where (3.3) has been utilized. From (4.15) and the fact that Fd is positive­
definite, the following upper bound for Va (t) can be obtained: 

(4.16) 

where (3.2) and Property 4.2 have been utilized. To facilitate the subse­
quent composite observer/controller stability analysis, we use (4.6) to sub-

stitute for q (t) in (4.16) to form a new upper bound for Va (t) as follows: 

Va:S (el (d2 + (el Ilfll + (el a Ilell- kamd 11~112 , (4.17) 

where (4.4) has been used. From the form of (4.17), we are motivated to 
design a controller that ensures that the Ilell and Ilfll terms in (4.17) are 
both driven to zero. 

4.3.2 Controller Formulation 

The dynamics for the position tracking error system can be formed by 
differentiating (4.3) with respect to time to yield 

(4.18) 

From the form of above position tracking error dynamics, we can see that if 
q (t) were measurable, a backstepping procedure could be used to determine 
the required control input T (t). However, since this is not the case, we add 

and subtract the measurable term q (t) to the right-hand side of (4.3) to 
produce 

e = qd- q - q, (4.19) 

where (4.5) has been utilized. Since there is no control input in the above 
position tracking error dynamics, we add and subtract a fictitious control 
input to the right-hand side of (4.19) to yield 

. . 
e = qd - [qd + ae] + [qd + ae]- q - q, (4.20) 

where a is the same control gain defined in (4.6). By using (4.6), we can 
simplify the expression given in (4.20) as shown below: 

e = -ae+f- q. (4.21) 

To analyze the stability of the position tracking error dynamics, we use the 
following non-negative function: 

(4.22) 
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The time derivative of Vel (t) along (4.21) yields 

Vel = e ( -o:e + r- i) , 
from which we can obtain 

(4.23) 

(4.24) 

From the form of (4.24) and the fact that (4.17) indicates that ij (t) can 
be driven to zero, we are motivated to design a control input that ensures 
that r (t) is driven to zero. 

With the goal of determining the open-loop dynamics for r(t), we differ­
entiate (4.6), premultiply both sides of the resulting expression by M(q), 

and then use (4.11) to substitute for M (q) q to produce 

. . . 
M(q) r= M(q)ijd+o:M(q) (qd - q)-koM(q) ij +Vm(q, q) q +G(q)+Fd q -T. 

(4.25) 
After utilizing (4.6) and (4.5), the right-hand side of (4.25) can be rewritten 
as .. .. 

M(q) r= we(q, q, t) - (0: + ko) M(q) ij -Vm(q, q)r - T, (4.26) 

where the auxiliary term we(q,q,t) E]Rn is defined as 

Given the structure of the open-loop dynamics of (4.26), the control input 
T(t) is designed as follows: 4 

T = we(q, q, t) + (0: + ke) r, (4.28) 

where kc is a positive control gain defined as 

(4.29) 

to facilitate the subsequent stability analysis. Substituting the control input 
of (4.28) into (4.26) gives the following closed-loop dynamics for r (t): 

M(q) r= - (0: + ke) r - (0: + ko) M(q) ij -Vm(q, q)r. (4.30) 

4 It is easy to see from the form of (4.27) that the control input of (4.28) is the same 

as the nonadaptive version of the controller presented in Section 3.2, except that Ii (t) 
has been used in lieu of q (t). 
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To enable the use of (3.3) during the stability analysis, Property 4.1 and 

(4.5) can be applied to the term Vrn(q, q)r in (4.30) to produce 

. . . 
M(q) r= -Vrn(q, q)r - (a + kc) r - (a + ko ) M(q) ij +Vrn(q, ij)r. (4.31) 

To analyze the stability of the filtered tracking error closed-loop dynamics, 
we use the following non-negative function: 

Vc2 = ~rTM(q)r. (4.32) 

The time derivative of Vc2 (t) along (4.31) is given by 

where (3.3) has been utilized. From (4.33), we can obtain the following 
upper bound for Vc2 (t): 

where (3.2) and Property 4.2 have been used. 

4.3.3 Composite Stability Result 

The combination of error systems given by (4.13), (4.21), and (4.31) yields 
the following stability result for the velocity observation error and position 
tracking error. 

Theorem 4.1 The velocity observer of (4.7) and (4.8), and the control law 
of (4.28) ensure that the closed-loop observer/controller system is semiglob­
ally exponentially stable as illustrated by 

(>:; ( },3) Ilx(t)1I ::; V ~ IIx(O)11 exp - },2 t (4.35) 

provided the observer/controller gains satisfy the following sufficient con-
ditions 

where 

1 
a>­

kn 

(>:; 
kl> V ~ Ilx(O)11 , (4.36) 

x = [l eT rT r E R3n , (4.37) 

1 
},1 = min{ml' I}, },2 = max{m2' I}, },3 = a - kn ' (4.38) 
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Proof. To prove the above result, we use the composite non-negative func-
tion: 

v = Vo + Vcl + Vc2, (4.39) 

where Vo (t), Vcl (t), and Vc2 (t) were defined in (4.14), (4.22), and (4.32), 
respectively. From the form of (4.39), it is not difficult to show that the 
following bounds hold: 

(4.40) 

where x (t) and .AI,.A2 were defined in (4.37) and (4.38), respectively. After 
taking the time derivative of (4.39), we can utilize (4.17), (4.24), (4.34), 
(4.10), and (4.29) to form the following upper bound on V (t): 

V::; -a IIel12 - a IIfl12 - a II i l12 

+ [llellllfll - 2kn Ilf112] + [llelillill- 2kn lIiln 

+(CI(d2 1Ii I12 - (CI(d2 1Ii I12 

- (kl - Iixll) ((CI IIil12 + (cl a IIifl12 + (cl IIf112) , 

where we have used the fact derived from (4.37) that Ilxll 2: Ilell , IIfll, Ilifll· 
Since the bracketed terms are nonlinear damping pairs, we can apply Lemma 
A.10 in Appendix A to further upper bound V (t) as follows: 

V::; - (a - k~) IIel12 - a IIfl12 - (a - :n) Ililr 

- (kl -llxll) ((el IIifl12 + (el a IIifl12 + (el Ilf112) . 
(4.42) 

From the form of (4.42), we can state that 

for kl > Ilx(t)ll, ( 4.43) 
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where x (t) and '>"3 were defined in (4.37) and (4.38), respectively. From 
(4.40), we can obtain the following sufficient condition for (4.43): 

for ( 4.44) 

Since V(t) :::; 0 Vt E [0, (0), V(t) is decreasing or constant Vt E [0, (0) (i.e., 
V(t) :::; V(O) Vt E (0,00)). Hence, a sufficient condition for (4.44) is given 
by 

for ( 4.45) 

Applying Lemma A.4 in Appendix A to (4.45) produces 

( 2'>"3) V(t) :::; V(O)exp - '>"2 t for k v2V(0) 
1> ~' (4.46) 

which yields the result delineated by (4.35) and (4.36) upon the application 
of(4.40).O 

Remark 4.1 From the above theorem, we know that x(t) E Crx;; hence, we 
can use (4.3), (4.6), (4.5), and the fact that the desired motion tmjectory . . 
is bounded to show that q(t), q (t), q(t) E Crx;. Since ij(t) is exponentially 
stable as dictated by (4.35), we can utilize Lemma A.11 in Appendix A to 
show that ij(t) E Crx;. As a consequence, we can use (4.9) and the fact that 
q(t) E Crx; to show that q(t) E Crx;. Using the above information, we can 
easily show from (3.1), (4.1), (4.28), (4.8), and the fact that M-1 (q) exists 
and is bounded (see Property 3.1) that ij(t), y(t), r(t), y(t) E Crx;. Thus, 
all system signals remain bounded during closed-loop opemtion. 

Remark 4.2 From (4.36), we can see that the control gain kl can be in­
creased to cover any set of initial conditions; therefore, the stability result 
is referred to as semiglobal. It is interesting to note the importance of the 
initial condition y(O) = -koij(O) given in (4.1) on this semiglobal result. 
Specifically, if y(O) =I -koij(O), it is easy to see from (4.1), (4.5), and 
(4.31) that x(O) would be a function of kl owing to (4.10). Hence, it would 
not be possible to satisfy (4.36) for all initial conditions. It is also impor­
tant to note that the control gains a and kn can be increased to speed up the 
tmnsient response of the position tmcking error, as illustmted by (4.35), 
(4·31), and (4.38). 
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Remark 4.3 After adding and subtracting q (t) to the right-hand side of 
(4.6) and rearranging terms, we can formulate the following inequality: 

lIell = Ilqd - qll :::; Ilfll + a Ilell + II~II· (4.47) 

Since each of the terms on the right-hand side of (4.47) is exponentially 
stable, as illustrated by Theorem 4.1, it is easy to see from (4.47) that the 
velocity tracking error e(t) is also exponentially stable despite the fact that 
the control law does not explicitly require velocity measurements. 

Remark 4.4 As illustrated by the form of (4.8) and (4.28), the observer­
controller requires exact model knowledge of the mechanical dynamics; hence, 
one may question the robustness of proposed controller. It is important to 
note that the results given in [3, 30, 32j all confirmed the robustness of an 
OFB linear control loop used in conjunction with a linear observer (or a 
linear filter). Specifically, these results indicate that a semiglobal uniform 
ultimate boundedness stability result can be obtained even in the presence 
of parametric uncertainty and additive bounded disturbances. 

4.3.4 Experimental Results 

We now discuss the real-time experimental implementation of the observer­
controller on the two-link, direct-drive, rigid robot manipulator test-bed 
described in Section 3.5.3. A PC hosting a Texas Instruments TMS320C30 
DSP board served as the computational engine while WinMotor provided 
the environment to write the control algorithm in the C programming lan­
guage. 

The OFB control law given by the velocity observer of (4.7) and (4.8) 
and the controller of (4.28) was applied to the two-link manipulator with 
the gains set to 

ko = 145, kc = 350, a = 125. (4.48) 

The desired position trajectory for the two links was selected to be 

(t) = [ 40.11 sin(t)(l - exp (-0.3t3 )) ] d 
qd 68.75sin(t)(1-exp(-0.3t3)) ego 

(4.49) 

All experimental runs were performed at a sampling period of 200 J.Lsec. 
The results of the experiment are shown in Figure 4.1. One can see that the 
position tracking error for both joints is approximately 0.04 deg or smaller. 
To examine the robustness of the OFB control law under payload variations, 
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a 5 lbs mass was added to the robot end-effector and the experiment was 
repeated under the same set of conditions. Figure 4.2 shows the results of 
the experiment with the 5 lbs payload. It is clear from the plots that there 
is no significant difference in the magnitude of the position tracking errors, 
which indicates that the OFB control law is indeed robust, to a certain 
extent, against payload variations. 

To provide a means for comparing the proposed OFB control law with 
a typical method of implementing a robot controller, we implemented the 
controller of (4.28) (i.e., the same controller given in Section 3.4 with the 
system parameters being exactly known) under exactly the same conditions 

as stated above, but with fj calculated by the following standard backwards 
difference algorithm: 

~ q(PT) - q((P -l)T) 
q= T forp=l,···,n, (4.50) 

where p represents the sampling instant, T represents the sampling period, 
and nT represents the total experiment time. We found that the best po­
sition tracking performance was obtained with the following gain selection 

kc = 5, a = diag {75, 45}. (4.51) 

Although the control gain a was defined as a scalar in (4.6) to facilitate 
the stability analysis, a was specified as a matrix in (4.51) to provide more 
flexibility during controller tuning. We note that the control gains for the 
backwards difference/controller could not be adjusted to values as high 
as those given by (4.48) without saturating the power amplifiers. From 
Figure 4.3, we see that there is not a large difference in the magnitude of 
the position tracking errors between the model-based observer/controller 
and the backwards difference/controller. However, when the 5 lbs payload 
was added to the robot end-effector, the differences of the two approaches 
became apparent. Comparing Figures 4.2 and 4.4, it is clear that while the 
model-based observer/controller shows no change in the magnitude of the 
position tracking error with the additional load, the performance of the 
backwards difference/controller degraded significantly. These results seem 
to indicate that the proposed OFB control law is more robust than the 
backwards difference/controller. 
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FIGURE 4.1. Position tracking errors of observer/controller without payload. 
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FIGURE 4.2. Position tracking errors of observer/controller with 5 [lbs] payload. 
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4.4 Linear Filter-Based Adaptive Control 

The model-based observer/controller of Section 4.3 exhibits the drawback 
of requiring exact model knowledge, i.e., it is unable to compensate for sys­
tem uncertainty while guaranteeing the convergence of the tracking errors 
to zero. In this section, we will illustrate how an OFB control law can be 
designed given uncertain knowledge of the constant, mechanical system pa­
rameters. Specifically, the DCAL controller of Section 3.5 is combined with 
a non-model-based filter that generates a replacement signal for velocity 
using position measurements. A Lyapunov-type analysis along with a judi­
cious definition of the tracking error terms are used to find the appropriate 
modifications to the DCAL controller. 

As in Chapter 3, in order to compensate for the lack of exact knowledge of 
the system parameters, an adaptation law will be developed to generate on­
line parameter estimates. The difference between the actual and estimated 
parameters is defined by 

8(t) = e - B(t), (4.52) 

where 8(t) E ]RP denotes the parameter estimation error vector, and B(t) E 

]RP denotes the dynamic estimate of the unknown, constant, parameter 
vector e defined in (3.4). 

4.4.1 Filter Formulation 

In order to compensate for the lack of direct measurements of the velocity 
signal, we will introduce a filter to generate a velocity tracking error related 
signal. This filter can be thought of as a high-pass filter with the position 
tracking error e (t) as the input and a pseudo-velocity-tracking error signal 
as the output. This pseudo-velocity signal attempts to capture the behavior 
of e (t). The filter is defined by the following dynamic relationship: 

ef = -ke+p (4.53) 

and 

p = -(k + l)p + (k2 + l)e, p(O) = ke(O), (4.54) 

where ef(t) E ]Rn is the output of the filter and will be used as a surrogate 
for the actual velocity error, p(t) E ]Rn is an auxiliary variable that allows 
the filter to be implemented without velocity measurements, and k is a 
positive control gain. The selection of the initial condition given in (4.54) 
(i.e., p(O) = ke(O) or ef(O) = 0) is motivated by the subsequent stability 
analysis. 
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To give some insight into the design of the above filter while also moti­
vating the subsequent control input design, we now derive the dynamics of 
the filter output ef (t). To this end, we first differentiate (4.53) with respect 
to time and then use (4.54) to substitute for p(t) to produce 

(4.55) 

After solving for p (t) from (4.53), and substituting the resulting expression 
into (4.55), we obtain the dynamics for ef (t) as follows: 

ef = -ef - k7) + e, (4.56) 

where 7)(t) E ]Rn is a filtered tracking error-like variable defined as 

(4.57) 

The filtered tracking error-like signal 7) (t) will be the starting point for the 
formulation of the control input. In addition, it should be noted that (4.57) 
can simply be rearranged as 

e = -e +7) - ef (4.58) 

to give the dynamics for e (t). 

4.4.2 Controller Formulation 

We begin the control formulation by determining the open-loop dynamics 
for 7) (t) defined in (4.57). To this end, we take the time derivative of (4.57) 
and premultiply the resulting expression by M(q) to produce 

M(q)r, = M(q) (ijd - ij) + M(q)ef + M(q)e 

(4.59) 

+M(q) (-ef - k7) + e) + M(q)( -e + 7) - ef), 

where (3.1), (4.56), and (4.58) were used to substitute for M(q)q, ef (t), 
and e (t), respectively. At this point, the desired linear parameterization 
term YdB defined in (3.22) is added and subtracted to the right-hand side 
of (4.59) and the relationship q = qd - e is used, where needed, to yield 

M(q)r, = YdB - T + M(q) (-ef - k7)) + M(q) (7) - ef) 

- Vm(q, q)e + M(q)ijd + Vm(q, q)qd + Pdq + G(q) - YdB. 
(4.60) 
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After again utilizing (4.58) to substitute for e (t) in (4.60), we have 

(4.61) 
+M(q)7] - 2M(q)ej + Vm(q, q) (ej + e), 

where the auxiliary variable Y (e, ej, 7], t) E IRn is defined as 

To simplify the notation, an additional auxiliary variable X (e, e j , 7], t) E IRn 

is defined as follows: 

X = Y + M(q)7] - 2M(q)ej + Vm(q, q) (ej + e) , (4.63) 

and applied to (4.61) to rewrite the open-loop dynamics for 7] (t) in the 
following final form: 

M(q)i} = -Vm(q, q)7] - kM(q)7] + YdB - T + X. (4.64) 

Based on the structure of (4.64) and the subsequent stability analysis, the 
control input T(t) is designed as 

(4.65) 

where k is the same control gain used in (4.54) and (4.53), and the dynamic 
parameter estimate vector B(t) is defined as follows: 

t t d B(t) =r Jo Yl(O")(e(O")+ej(O"))dO"-r Jo dO" {Yl(O")}e(O")dO"+rYle, 

(4.66) 
with r E IRPxp being a diagonal, positive-definite, adaptation gain matrix. 
After substituting (4.65) into (4.64), we obtain the following closed-loop 
dynamics for 7] (t): 

M(q)i} = - Vm(q, q)7] - kM(q)7] + YdB + X+kej - e, (4.67) 

where the definition given in (4.52) has been used. 

Remark 4.5 It is not difficult to show that an upper bound can be placed 
on the norm of the auxiliary variable X (.) defined in (4.63) as follows (see 
Appendix B for proof): 

(4.68) 
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where x(t) E 1R3n is defined as 

(4.69) 

and (1, (2 are some positive bounding constants that depend on the physical 
parameters of the mechanical system and on the bounding constants defined 
in (4.4). The bound of (4.68) will be utilized during the stability analysis. 

Remark 4.6 As will be seen in the stability analysis, the parameter esti­
mate vector in (4.66) is based on the need to have e(t) updated according 
to 

(4.70) 

The implementation of the above form would, howe'ver, require e(t) (see 
the definition of (4.57)), which would in turn contain the unmeasurable 
velocity. To circumiJent this problem, the expression given by (4.70) can 
be integrated and segregated into measurable and unmeasurable terms as 
follows: 

e = r lot (Yl(a) (e(a) + ef(a))) da + r lot Yl(a)e(a)da. (4.71) 

The first integral of (4.71) can be directly implemented, while the second 
integral can be rewritten using integration by parts to yield the update law 
given in (4.66). Note that this last operation introduces the constraint that 
Yd(qd, qd, qd) must be differentiable with respect to time, which leads to the 

constraint that ·q."d (t) be bounded (see (4.4)). 

4.4.3 Composite Stability Result 

The combination of the error dynamics of (4.56), (4.58), (4.67) and (4.70) 
gives the following stability result for the position tracking error. 

Theorem 4.2 The filter of (4.54) and (4.53) and the adaptive control law 
given by (4.65) and (4.70) ensure the position tracking error is semiglobally 

I asymptotically stable in the sense that 

lim x(t) = 0, 
t-co 

(4.72) 

where x (t) was defined in (4.69). This result holds provided the control gain 
k is defined as follows: 

(4.73) 
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with kn being a nonlinear damping gain selected to satisfy the following 
sufficient condition: 

A2 2 
kn > Al Ilz(O) II + 1, (4.74) 

where ml was defined in (3.2), (1' (2 were defined in (4.68), 

z = [xT rl] T E jR3n+p (4.75) 

and 

Al = ~ min {I, mb Amin {r-l}} A2 = ~ max {I, m2, Amax {r-l}} . 
(4.76) 

Note that Amin {.} and Amax {.} in (4.76) are used to denote the minimum 
and maximum eigenvalues of a given matrix, respectively. 

Proof. We begin by introducing a non-negative function of the form 

1 TIT 1 T 1-T -I-
V ="2e e + "2efef +"27] M(q)7] +"28 r 8. (4.77) 

From (4.77), V (t) can be bounded as 

Al IIxll2 :s Al IIzl12 :s V :s A211z112 , (4.78) 

where x (t) and z (t) were defined in (4.69) and (4.75), respectively, and the 
positive constants AI, A2 were defined in (4.76). Differentiating (4.77) with 
respect to time produces 

iT = eT e + eJ ef + ~7]TM(q)7] + 7]T M(q)i] + il r- l e . (4.79) 

Substitution from the three error systems defined in (4.56), (4.58), and 
(4.67) yields 

iT = _eT e - eJef - k7]TM(q)7] + 7]T x+ rl (YI7] - r-l~) , (4.80) 

where (3.3) has been applied, and we have used the fact from (4.52) that 

B= - e (Le., 8 is a vector of constants). If the parameter estimate update 
law of (4.70) is now substituted into (4.80), we obtain 

(4.81) 

After applying (3.2) to (4.81), we can form an upper bound on iT (t) as 
shown below: 
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After substituting (4.68) and the definition of the control gain k given in 
(4.73) into (4.82), we obtain the following new upper bound on V (t): 

V < -llel12 -llefl12 -111]112 + [(1 Ilx11111]11- knd 111]11 2] 

+ [(21IxI12111]11- knd 111]112] . 
(4.83) 

Since the bracketed terms form nonlinear damping pairs, we can apply 
Lemma A.10 in Appendix A to further upper bound V (t) as 

(4.84) 

where (4.69) was applied to the first three terms on the right-hand side of 
(4.83). The sign of the upper bound on V (t) is determined by the bracketed 
term of (4.84), which must be positive in order to ensure the negative 
semidefiniteness of V (t). That is, we must have 

1- L (1 + Ilx(t)112) > 0 (4.85) 

for V (t) to be negative semidefinite. From (4.78), a sufficient condition for 
(4.85) can be derived as follows: 

(4.86) 

hence, the analysis to this point can be summarized as 

for 
V(t) 

kn > T+ 1, (4.87) 

where f3 is some positive constant. From (4.87), we know that since V (t) :S 0 
Vt E [0,00), V(t) is decreasing or constant Vt E [0,00); therefore, a sufficient 
condition for (4.87) is given by 

for 
V(O) 

kn>T+1, 

or by (4.78), we have a sufficient condition for (4.88) as 

for 
A2 2 

kn > A1 Ilz(O) II + l. 

(4.88) 

(4.89) 

The direct implication of (4.77) and (4.89) is that z(t) E £00' (i.e., e(t), 
ef(t), and 1](t) E £00 and B(t)E £00)' The bound on e(t) along with the 
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required bound on qd(t) implies that q(t) E .coo. From the boundedness of 
e(t), ef(t), and TJ(t) , we can use (4.56) and (4.58) to show that ef(t), e(t) E 

.coo; hence, q(t) E .coo owing to the boundedness of qd(t). Since B(t) is 
bounded, the definition in (4.52) and the fact that e is a constant vector 
can be used to show that 8(t)E .coo. From (4.53) and (4.54), it is clear 
that p( t), p( t) E .coo. From the above boundedness statements and the fact 
that Yd (t) is only a function of the bounded desired trajectory, we can use 
(4.65) to state that the control input T(t) E .coo. Finally, we can utilize 
(3.1), (4.67), and the fact that M-1(q) exists and is bounded to illustrate 
that ij(t) , iJ(t) E .coo. 

Using the above information, we can state from the definition of (4.69) 
that x(t),±(t) E .coo. In addition, it is not difficult to see from (4.89) that 
x(t) E .c2 (see (2.20) to (2.22)); hence, Lemma A.3 in Appendix A can now 
be invoked to obtain the result of (4.72). 0 

Remark 4.7 Similar to Theorem 4.1, the semiglobal nature of Theorem 
4.2 stems from the fact that the control gain kn can be made arbitrarily 
large to encompass any set of initial conditions as illustrated by (4.74). This 
semiglobal result is facilitated by the filter initial condition p(O) = ke(O) 
given in (4.54) (see Remark 4.2 for a similar motivation). Moreover, it is 
obvious from the form of (4.74) and (4.75) that we must have a priori in­
formation on bounds for the unknown parameters and on the initial velocity 
to facilitate the calculation of kn . 

Remark 4.8 An extension to Theorem 4.2 can be made to describe velocity 
tracking. The equality in (4.58) can be used to form the following inequality: 

(4.90) 

From (4.72) and (4.69), we know that the terms on the right-hand side of 
the above inequality are driven to zero; hence, we can conclude that 

lim e(t) = 0; 
t-+oo 

(4.91) 

i.e., the controller ensures semiglobal asymptotic velocity tracking. 

Remark 4.9 An interesting aside to the above developments lies in the 
similarity between the filter used to generate the velocity information and 
a continuous time approximation of the backwards difference algorithm. 
That is, the Laplace domain transfer function for producing a velocity 
tracking error estimate from the position tracking error by a backwards 
difference approach can be obtained using the bilinear transformation as 
Hbd(S) = T~~2 (where T is the sample time), while the Laplace domain 
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transfer function for the velocity error generating filter in (4.54) and (4.53) 
is Hj(s) = elM = - :8: ;;I~ . The similarity in the magnitude frequency 
responses of these two transfer functions suggests that the velocity error 
generating filter acts much like the discrete differentiator over a range of 
frequencies. This similarity also seems to suggest that since the filter dy­
namics can be incorporated into the closed-loop stability analysis, the same 
tracking result might be extrapolated to the backwards difference approach 
(i. e., the proven use of this velocity error generating filter validates to some 
degree the use of a backwards difference algorithm). 

4.4.4 Experimental Results 

The linear filter/controller scheme was implemented on the same experi­
mental test-bed described in Section 4.3.4. Based on (3.4) and (3.58), the 
unknown parameter vector () was constructed as 

() = [PI P2 P3 f dl 
T 

fd2] . (4.92) 

The experiment was performed using the following desired position trajec-
tories 

( ) _ [ 45.84 sin(2t) (1 - exp (-0.3t3)) ] d 
qd t - 45.84 sin(2t) (1 _ exp (-0.3t3)) ego (4.93) 

The experiment was run several times and it was found that the best track­
ing performance was achieved using the following set of gains: 

k = diag {32.25, 28.0} , r = diag {22.8, 0.8,1.25,100.6, 40.2} . 

where, for implementation purposes, the control gain k was specified as l), 

matrix as opposed to the scalar definition of (4.73). In the experiment, all 
parameter estimates were initialized to zero (Le., 8(0) = 0). The integra­
tions required in the parameter estimator of (4.66) and the filter of (4.54) 
and (4.53) were performed using a standard trapezoidal algorithm with 
a sampling period of 0.5 msec. The results of the experiment are shown 
in Figure 4.5 and Figure 4.6. Figure 4.5 shows the two position tracking 
errors, while the parameter estimates are shown in Figure 4.6. 

4.4.5 Nonadaptive Extensions 

Similar to the nonadaptive extensions to the adaptive FSFB controller 
discussed in Section 3.5.4, it is possible to use fixed parameter estimates in 
the feedforward component of the OFB controller of (4.65) as an alternative 
to the dynamic, parameter adaptation law of (4.66). The choice of the fixed 
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parameter estimates will dictate the type of position tracking result that 
can be achieved as described by the following two corollaries. 

Corollary 4.1 (Constant Best Guess Parameter Estimate) Let e in 
(4.65) contain constant, best guess estimates of the system parameters and 
the control gain k of (4.73) be redefined as 

(4.94) 

where E is a positive nonlinear damping gain, and (3 is a positive bounding 
constant defined as 

(4.95) 

which depends only on the bounds on the desired trajectory and the magni­
tude of the difference between the constant, best guess parameter estimates 
and the actual parameters. If the nonlinear damping gain kn in (4.94) is 
selected such that 

(4.96) 

then the position tracking error is semiglobally uniformly ultimately bounded 
(SGUUB) in the sense that 

Ilx(t)11 :s 

where x (t) was defined in (4.69), /3 is some positive constant less than one, 
and 

(4.98) 

Proof. The proof of Corollary 4.1 follows directly from the combination of 
the proofs of Corollary 3.1 and Theorem 4.2. 0 

Remark 4.10 The rate of convergence of Ilx(t)11 in (4.97) to the steady­
state bound given in (3.75) is limited by the maximum value of /3, which will 
be smaller than one. This rate of convergence can be increased if the filtered 
tracking error-like variable of (4.57) is redefined to include the weighted sum 
of ef (t) and e (t) in the follow manner: 

in which ka, kf3 are positive control gains. This change in 7] (t) will require 
minor changes to the velocity error generating filter in (4.54) and (4.53) 
and to the selection of the control gains k and kn (see [31J for details). 
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Remark 4.11 It should be noted that the controller of (4.65) with 0 set to 
a constant best guess estimate vector is directly related to the approach given 
by Yuan and Stepanenko in [32]. Furthermore, Corollary 4.1 also includes 
the case where 0= O. That is, even if there is no feed forward compensation 
in the control law, the SGUUB tracking result of (4.97) remains valid. This 
controller can be seen as a simple linear controller that is directly related to 
the controllers proposed by Berghuis and Nijmeijer [3} and Qu et al. [30]. 
While the linear controllers proposed in [3, 30} used second-order filters to 
generate velocity information, the approach presented here uses a first-order 
filter. 

Corollary 4.2 (Exact Parameter Knowledge) Let o=() in (4.65) and 
the control gain k be selected according to (4.73). If the nonlinear damping 
gain kn in (4.73) is selected such that 

kn > ~: IIx(0)112 + 1, (4.99) 

then the position tracking error is semiglobally exponentially stable in the 
sense that 

f>:; ( (3t) IIx(t)1I ~ V ~ Ilx(O)1I exp - 2A2 ' (4.100) 

where x (t) was defined in (4.69), AI, A2 were defined in (4.98), and {3 is 
some positive constant less than one. 

Proof. The proof follows directly from the proof of Corollary 4.1. 0 

Remark 4.12 It follows from (4.100) that the rate of convergence of IIx(t) II 
to zero can be increased if the controller is modified in accordance with Re­
mark 4.10. 

4.5 Nonlinear Filter-Based Adaptive Control 

A theoretical limitation of the linear filter-based, OFB, tracking controller 
of Section 4.4 is the semiglobal nature of the stability result. In this section, 
we demonstrate how to construct a nonlinear filter-based controller such 
that a global stability result is obtained for the position tracking error. 
The control law structure is composed of (i) a DCAL feedforward term to 
compensate for parametric uncertainty, and (ii) a nonlinear feedback term 
coupled to a nonlinear dynamic filter to compensate for the lack of velocity 
measurements and the difference between the actual system dynamics and 
the DCAL feedforward term. 
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To aid the control design and analysis of this section, we define the vector 
function Tanh(·) E jRn and the matrix function Cosh(·) E jRnxn as follows: 

(4.101) 

and 

Cosh(~) = diag { cosh ( ~ 1), ... , cosh( ~n)} , (4.102) 

where ~(t) = [~l' ... , ~nlT E jRn. Based on the definition of (4.101), it can 
easily be shown that the following inequalities hold for V~(t), v(t) E jRn: 

and 

1 n 

"2 tanh2 (II~II) :S In (cosh (II~II)) :S 2::)n (cosh (~i)) :S 11~112 
i=l 

cos (t ~i) - cos (t Vi) I :S 8 t Itanh (~i - vi)1 

ISin (t ~i) - sin (t Vi) I :S 8 t Itanh (~i - vi)l, 

(4.103) 

(4.104) 

where ~Jt), Vi(t) denote the i-th elements of the vectors ~(t), v(t). Based 
on the inequalities of (4.104), we will assume that the dynamic model ofthe 
mechanical system considered in this section satisfies the following property 
(in addition to the properties given in Sections 3.2 and 4.2). 

Property 4.3: The following bounds for the inertia, centripetal-Coriolis, 
and gravity terms of (3.1) are assumed to exist: 

IIM(~) - M(v)llioo :S (m II Tanh (~- v)11 

IIG(~) - G(v)11 :S (g II Tanh (~- v)11 (4.105) 

IlVm(~, lj) - Vm(v, lj) Ilioo :S (c211ljllll Tanh (~ - v) II, 

where (m, (g, (c2 are positive bounding constants, and ~(t), v(t) E jRn. 

An outline of the proof for the bounds given in (4.105) is presented 
in Appendix C for a specific mechanical system (the 6 degrees-of­
freedom Puma robot [23]). 
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4.5.1 Filter IController Formulation 

Let us redefine the filtered tracking error-like variable 7]( t) of (4.57) as 
follows: 

7] = e + Tanh (e) + Tanh (e f) , (4.106) 

where Tanh(·) was defined in (4.101), and ef(t) is the filter output which 
is redefined to have the following dynamics 

ef(O) = 0, (4.107) 

with k E ~ being a positive control gain, and Cosh (.) being defined in 
(4.102). Note that now the dynamics for e (t) are given by rearranging 
(4.106) to yield 

e = - Tanh (e) + 7] - Tanh (e f) . (4.108) 

Following similar derivations as those outlined in Section 4.4.2, the open­
loop dynamics for 7] (t) can be obtained, as shown below: 

M(q)i] = - Vm(q, q)7] - kM(q)7] + YdB + X + Y - T, (4.109) 

where X (e, ef, 7], t), Y (e, ef, 7], t) E ~n are defined as 

X = M(q)Cosh-2 (e) (7] - Tanh(ef) - Tanh(e» 

+M(q) Cosh-2 (ef) (- Tanh(ef) + Tanh(e» 

+Vm(q, qd + Tanh(ef) + Tanh(e» (Tanh(ef) + Tanh(e» (4.110) 

-Vm(q,7]) (qd + Tanh(ef) + Tanh(e» 

and 
(4.111) 

Note that in the formulation of (4.110), Property 4.1 has been utilized. 
From the form of (4.109) and the subsequent stability analysis, the following 
control input is formulated: 

(4.112) 

where k is the same control gain defined in (4.107), and the parameter 
estimate vector B(t) E ~p is generated according to the following adaptation 
algorithm: 

(4.113) 
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with r E ~pxp being a diagonal, positive-definite, adaptation gain ma­
trix. After substituting (4.112) into (4.109), we can form the closed-loop 
dynamics for ry(t) as given below: 

M(q)ry = -Vm(q, q)ry - kM(q)ry + YdB + Y + X 

(4.114) 
+kCosh2 (ef) Tanh(ef) - Tanh(e). 

Remark 4.13 By exploiting (3.3), (4.2), and the properties of the hyper­
bolic functions, we can place an upper bound on X of (4.110) as follows: 

Ilxll :::; (lllxll, (4.115) 

where (1 is some positive bounding constant that depends on the mechanical 
system parameters and the desired trajectory, and x(t) E ~3n is defined as 

(4.116) 

Furthermore, by utilizing Property 4.3, it can be shown that Y (.) of (4.111) 
can be upper bounded as follows: 

(4.117) 

where (2 is also some positive bounding constant that depends on the me­
chanical system parameters and the desired trajectory. 

Remark 4.14 Based on the definition of ry(t) given in (4.106), it seems 
that velocity measurements are required for control implementation in equa­
tions (4.101), (4.112), and (4.113). However, in a subsequent section, we 
will illustrate how the control scheme has an equivalent form that depends 
only on position measurements. 

4.5.2 Composite Stability Result 

Theorem 4.3 The filter of (4.101) and the adaptive control law of (4.112) 
and (4.113) ensure global asymptotic position tracking in the sense that 

lim e(t) = 0 
t .... HX) 

provided the control gain k of (4.112) is selected as follows: 

k = ~1 (1 + kn ((1 + (2)2) , 

(4.118) 

(4.119) 

where m1, (1, and (2 were defined in (3.3), (4.115), and (4.117), respec­
tively, and kn is a nonlinear damping gain that must satisfy the following 
sufficient condition: 

(4.120) 
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Proof. We start with the following non-negative function: 5 

where ei (t) , efi (t) are the ith elements of the vectors e (t) and ef (t). After 
taking the time derivative of (4.121), we obtain the following expression for 
V (t): 

V = TanhT(e)e+TanhT(ef)ef+"lTM(q)r,+~"lTM(q)"l-OT r-l~. (4.122) 

We can now utilize (4.106), (4.107), (4.114), and (4.113) in (4.122) to sim­
plify the expression for V (t) as follows: 

V = -TanhT(e)Tanh(e)-TanhT(ef)Tanh(ef)+"lT (y + x) _k"lTM(q)"l, 

(4.123) 
where (3.3) has been employed. After applying (4.115), (4.117), (3.2), and 
(4.119) to (4.123), we obtain the following upper bound for V (t): 

V < -IiTanh(e)1I2 -IiTanh(ef)1I2 -1I"l1l2 
(4.124) 

Application of the Lemma A.lO in Appendix A to the bracketed term in 
(4.124) yields the following new upper bound on V (t): 

• 2 1 2 
V :::; -lIxll + kn IIxll , (4.125) 

where x (t) was defined in (4.116). Finally, if kn is selected according to 
(4.120), we can rewrite (4.125) as 

(4.126) 

where f3 is some positive constant. 
We note that In(cosh(O)) = 0 and that In(cosh(.)) is a radially un­

bounded, globally positive-definite function. Hence, owing to the structure 
of Vet) given in (4.121), Vet) is a radially unbounded, globally positive­
definite function for all e(t), ef(t), "l(t) , OCt), and t. Since Vet) is nega­
tive semidefinite as illustrated by (4.126), we now know that Vet) E Coo, 

5It should be noted that the first two terms in Vet) are motivated by the work given 
in (26). 



www.manaraa.com

116 ,1. Output Feedback Tracking Controllers 

which implies that e(t),eJ(t),'f)(t),B(t) E Loo; hence, q(t),q(t),B(t) and 

B (t) E Loo. We can now utilize (4.106), (4.107), and (4.114) to state that 
e(t), eJ(t), i](t) E Loo. The above boundedness statements together with 
the fact that the desired trajectory is bounded allow us to conclude that 
ij(t) , T(t) E Loo. 

Utilizing the above information, (4.116), and (4.126), we can state that 
x(t), ±(t) E Loo and x(t) E L2; hence, we can now invoke Lemma A.3 in 
Appendix A to conclude that lim x(t) = O. From the definition given in 

t--->oo 
(4.116), we can now see that lim Tanh(e(t)) = 0, which leads to the result 

t--->oo 
given by (4.118) owing to the properties ofthe hyperbolic tangent function. 
o 

4.5.3 OFB Form of Filter jController 

We now illustrate how the control scheme formulated in Section 4.5.1 has 
an equivalent form that only requires position measurements. Note that the 
control input given by (4.112) and (4.113) does not actually need the com­
putation of e J (t); rather, only computations of Tanh ( e J) and Cosh2 (e J ) 
are required. Also note that if we define the following relationship: 

(4.127) 

then according to standard hyperbolic identities, we have 

211 
cosh (eJi) = 2 = -1 2' 

1 - tanh (eJi) - Yi 
(4.128) 

where Yi(t) is the i-th element of the vector y(t) E ]Rn. 

We will now show that Yi(t) (and hence, tanh (eJi) and cosh2(eJi)) can 
be calculated with only position measurements. First, note that the filter 
given by (4.107) can be written element-wise as follows: 

eJi(O) = 0, (4.129) 

where 'f)i(t) is the i-th element of the vector 'f)(t) defined in (4.106). After 
taking the time derivative of (4.127), we can substitute (4.129) and (4.128) 
into the resulting expression to obtain 

Yi(O) = O. 
(4.130) 
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It is now straightforward to utilize (4.130) to construct the following filter, 
which also computes Yi(t): 

{
Pi = - (1 - (Pi - kei)2) (Pi - kei - tanh (ei)) - k (tanh (ei) + Pi - kei) 

Yi = Pi - kei 
(4.131) 

where Pi(O) = kei(O). In (4.131), Pi(t) is an auxiliary variable that allows 
Yi(t) (and hence, tanh (efi) and cosh2(efi)) to be calculated with only po­
sition measurements. 

We now illustrate how the controller given by (4.112) and (4.113) can be 
computed with only position measurements. First, we substitute the defin­
ition of 1](t) given by (4.106) into (4.113) and then integrate the resulting 
expression by parts to obtain 

O(t) = rYl(t)e(t) +r lot (Yl(a) (Tanh(e(a)) +y(a)) - YI(a)e(a)) da, 

(4.132) 
where we have utilized the fact from (4.127) that y(t) =Tanh(ef(t)). By 
utilizing (4.131) to compute y(t), it is now easy to see that O(t) can be 
computed with only position measurements. After substituting (4.127) and 
(4.128) into (4.112), the i-th component of the control input can be written 
as follows 

(4.133) 

where Ti(t) and (YdO)i are the i-th elements ofthe vectors T(t) and YdO, 

O(t) is computed using (4.132), and Yi(t) is computed using (4.131). 

Remark 4.15 It is clear from (4.127) and (4.133) that Yi (t) must be re­
stricted such that IYi(t)1 < 1 for all time. To illustrate that this does indeed 
occur, first, note that since ef(O) = 0 (see (4.107)), we know from (4.127) 
that y(O) = O. Secondly, from the proof of Theorem 4.3, it follows that 
efi(t) E Coo; hence, we can use the definition given by (4.127) and the 
properties of the hyperbolic functions to show that IYi(t)1 < 1 for t > O. The 
proof of Theorem 4.3 also illustrates that O(t) E Coo and e(t) E Coo; thus, 
it is now easy to see that all of the signals in the OFE form of the control 
given by (4.131), (4.133), and (4.132) remain bounded for all time (i.e., 

Pi(t), Pi(t), Ti(t) E Coo). 
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4.5.4 Simulation Results 

The adaptive OFB controller given by (4.133), (4.131), and (4.132) was 
simulated utilizing the dynamic model of the 1M! manipulator [15] given in 
(3.58). The desired position trajectory for links 1 and 2 in the simulations 
were selected as follows: 

d(t) = [ 0.7sin(t) (1- exp (-0.3t3 )) ] 

q 1.2sin(t) (1-exp(-0.3t3)) rad, (4.134) 

while the parameter estimates were initialized to zero (Le., £1(0) = 0). First, 
the controller was simulated with the actual positions and velocities initial­
ized to zero, and the control and adaptation gains set to 

k =10, r = diag {25, 1.0, 5.0, 30, 30} . 

The position tracking errors for links 1 and 2 are shown in Figure 4.7. 
The control inputs are depicted in Figure 4.8 along with the variables Yl (t) 
and Y2(t) defined in (4.127). Figure 4.9 illustrates the parameter estimates. 
Next, the controller was run with q(O) = [1.0, _1.0]T rad and q(O) = [O,ojT 
rad/sec, while the control and adaptation gains were selected as 

k = 0.1, r = diag {50, 1.0, 1.0, 150, 150} . 

Note that a small value was utilized for the control gain k in order to 
illustrate the global properties of the control law. That is, even for large 
initial conditions, the use of a small control gain still provides asymptotic 
tracking. For scaling purposes, Figure 4.10 shows magnified plots of the 
position tracking errors for t E [0, 10] sec and for t E [10,120] sec with 
the idea of illustrating the asymptotic tracking performance. The control 
inputs and the variables Yl(t) and Y2(t) are shown in Figure 4.11, while the 
parameter estimates are shown in Figure 4.12. It is important to observe 
from Figures 4.8 and 4.11 that IY1(t)1 < 1 and IY2(t)1 < 1, as predicted by 
the proof of Theorem 4.3. 

Since the definition of (4.119) and the condition of (4.120) arise from 
a conservative stability analysis, it comes to no surprise that even if the 
value chosen for k does not satisfy these sufficient conditions, we still obtain 
asymptotic tracking. This phenomenon can be explained by noting that 
the function cosh2(.) becomes big as its argument increases; hence, the 
dynamic control gain matrix kCosh2 (ef) in (4.112) automatically increases 
to compensate for large tracking errors even for small values of k. 
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FIGURE 4.7. Position tracking errors of nonlinear filter/controller with zero ini­
tial conditions. 
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FIGURE 4.9. Parameter estimates of nonlinear filter/controller with zero initial 
condit.ions. 
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4.5.5 Extensions 

Since (4.112) is a position tracking controller, a simplified version of the con­
troller can be used for global position setpoint control (i.e., qd =constant, 

qd = ijd =q d= 0). Specifically, for the setpoint control problem, YdB defined 
in (3.4) becomes 

(4.135) 

and hence, the parameter update law given by (4.132) simplifies to 

8(t) = rY[(t)e(t) + r lot Y[(a) (Tanh(e(a)) + y(a)) da. (4.136) 

The filter given by (4.131) and the control input given by (4.133) are utilized 
to complete the structure of the adaptive setpoint control law. 

If we assume exact model knowledge, the control input of (4.112) can be 
redesigned as follows 

T = M(q)ijd+ Vrn(q, qd)qd +G(q) + Fdqd - kCosh2 (ef) Tanh (ef) + Tanh(e); 
(4.137) 

hence, the closed-loop dynamics for ry(t) becomes 

M(q)'iJ = -Vrn(q, q)ry - kM(q)ry+ Y + X+ kCosh2 (ef) Tanh(ef) - Tanh(e), 
(4.138) 

where X (-) is still given by (4.110), but now Y (t) is defined as 

(4.139) 

Note that by using (4.108), Y (-) of (4.139) can now be bounded as in (4.117) 
but without the need for Property 4.3. By slightly modifying the stability 
analysis used to prove Theorem 4.3, we can show that the controller given 
by (4.137) yields global asymptotic position tracking. In a manner similar 
to that used for the adaptive controller, it is also easy to show that the 
controller given by (4.137) can be computed with only position measure­
ments. 

4.6 Notes 

Global solutions to the OFB position setpoint control problem have been 
presented by several researchers. For example, model-based OFB controllers, 
composed of a dynamic linear feedback loop plus feedforward gravity com­
pensation, were proposed by Berghuis and Nijmeijer [4], Burkov [7], and 
Kelly [21] to globally asymptotically stabilize a class of mechanical systems. 
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In [1], Arimoto et al. also presented a model-based, global regulating OFB 
controller; however, the gravity compensation term was dependent on the 
desired position set point as opposed to the actual position. With the intent 
of overcoming the requirement of exact model knowledge, Ortega et al. [29] 
designed an OFB, Pill-like regulator that compensated for uncertain grav­
ity effects; however, the stability result was semiglobal asymptotic. In [14], 
Colbaugh et al. proposed a global regulating OFB controller that compen­
sated for uncertain gravity effects; however, the control strategy required 
the use of two different control laws (Le., one control law was used to drive 
the setpoint error to a small value, then another control law was used to 
drive the setpoint error to zero). 

With respect to the more general problem of OFB position tracking 
control, semiglobal results have dominated the scenario. For example, in 
Berghuis and Nijmeijer [4] and Lim et al. [24], model-based observers 
and controllers yielded sellliglobal exponential position tracking, while in 
Nicosia and Tomei [27], a semiglobal asymptotic tracking result was achieved. 
Robust, filter-based control schemes were designed in Berghuis and Nijmei­
jer [3], Qu et al. [30], and Yuan and Stepanenko [32] to compensate for 
parametric uncertainty while producing semiglobal uniformly ultimately 
bounded position tracking. In Burg et al. [5, 6] and Kaneko and Horowitz 
[20], adaptive, filtered-based controllers were presented that yielded semi­
global asymptotic position tracking. Other semiglobal OFB tracking con­
trollers can be found in Wit et al. [9]-[13], Erlic and Lu [16, 17], Hsu and 
Lizarralde [18], Nicosia et al. [28], and Zhu et al. [34]. 

To the best of our knowledge, the only previous work targeted at the 
global OFB tracking control problem is given in [26] and [8]. In [26], Loria 
developed a model-based controller that yielded global asymptotic position 
tracking; however, the control was designed for only SISO rigid mechanical 
systems. In [8], Burkov used singular perturbation analysis to show that 
a model-based controller, used in conjunction with a linear observer, can 
yield asymptotic tracking for any initial conditions; however, as pointed out 
in [26], no explicit bound on the singular perturbation parameter was given. 
Motivated by the structure of the stability analysis given in [26], Zhang et 
al. [33] designed a filter-based, adaptive controller for the MIMO case that 
compensated for parametric uncertainty and achieved global asymptotic 
position tracking. 

In comparison to the above literature review, we first note that the ob­
server presented in Section 4.3 is nearly identical to the observer presented 
in [27]; however, the controller given in (4.28) has some additional feedfor­
ward terms that are not included in the controller presented in [27]. Indeed, 
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it is these additional terms along with the resulting stability analysis that 
allowed an exponential stability result to be obtained as opposed to the 
asymptotic stability result of [27]. Furthermore, we would like to point 
out that the observer/controller presented in Section 4.3 should be con­
sidered as secondary to the work of [2]-[4] since in [4] a general approach 
based on passivity techniques was used to generate a class of observer­
controllers. However, the following differences in the work of [4] and Sec­
tion 4.3 are worth mentioning. First, even though the same stability results 
are achieved, the design in Section 4.3 explicitly illustrates how the control 
gains can be increased to improve the transient response (see Remark 4.2). 
In addition, it is interesting to note that it is not necessary to drive q(t) 
(defined in (4.9)) to zero to obtain the desired stability result. As for the 
linear filter-based, adaptive tracking controller presented in Section 4.4, 
we would like to mention that it yields, as a subresult, a linear regulator 
that semiglobally asymptotically stabilizes the mechanical system dynam­
ics with uncertain gravity effects (similar to [29]). 

As a final comparison note, we observe that while the structure of the 
nonlinear filter-based, adaptive controller of Section 4.5 resembles that of 
[26] in certain aspects, the following design/analysis characteristics were all 
instrumental in the extension of the model-based controller for SISO me­
chanical systems given in [26] to uncertain, MIMO mechanical systems: the 
use of a desired trajectory-based feedforward term, a different filter struc­
ture, the exploitation of an additional property of the mechanical systems 
dynamics, and a different error system development and analysis. 
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5 
Strings and Cables 

5.1 Introduction 

In the previous chapters, controllers were designed for mechanical systems 
that are modeled by nonlinear ODEs. For the remainder of this book, we 
will focus our attention on the development of control algorithms for me­
chanical systems that are assumed to be modeled by PDEs. 

The vibrating string phenomenon is one of the most interesting and sim­
ple examples of a distributed parameter system because its dynamics can 
be described by a linear, second-order PDE. In the first part of this chap­
ter, we will use Lyapunov-type design and analysis arguments to develop 
boundary control strategies for the most commonly used string model -
the wave equation. We then discuss how the controller can be modified 
to compensate for relatively large string deflections and time-varying ten­
sion effects by using a nonlinear, distributed parameter model for control 
design purposes. The boundary control laws are divided into two classes: 
model-based controller and adaptive controller. The model-based controller 
provides a stepping stone towards the synthesis of the adaptive controller, 
which is designed to cope with constant, parametric uncertainty. 

While practical application of controllers for the wave equation is some­
what limited, a thorough understanding of the control design methodology 
for the wave equation serves as a platform for developing controllers for 
more complex distributed parameter systems. As such, in the latter part of 
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this chapter, we illustrate how the boundary control technique developed 
for the wave equation can be applied to mechanical systems that suffer from 
cable-induced vibrations. In contrast to the limited practical importance 
of the wave equation, cables are used in many engineering applications ow­
ing to their inherent low weight, flexibility, strength, and storability. The 
transverse stiffness of a cable depends on its tension and length; however, 
long, sagged cables can vibrate excessively in response to relatively small 
disturbances. This vibration degrades the performance of the cable system 
and ultimately leads to failure. This problem has motivated, in the past, 
the development of passive vibration control methods. One such method 
for reducing cable vibration is to increase the cable tension; however, this 
remedy induces high stress and eventually reduces the life of the cable. 
Another approach is the use of passive cable dampers, which can reduce 
the resonant forced response but may have little effect on the transient 
response. Because of its inherent cost and/or feasibility advantages, active 
boundary control provides an alternative, practical approach for reduc­
ing cable vibration. To this end, we will apply Lyapunov-type design and 
analysis arguments to develop model-based and adaptive boundary control 
strategies for a distributed parameter model of a cable system. 

5.2 Actuator-String System 

In this section, we present controllers for a boundary-actuated string model. 
Specifically, we first design a linear, model-based boundary controller that 
exponentially regulates the vibration of a small-displacement string. Next, 
we redesign the model-based boundary controller as an adaptive boundary 
controller that compensates for parametric uncertainty and asymptotically 
regulates the string displacement. Finally, we discuss a large-displacement 
extension of the linear, model-based controller and adaptive controller. 

5.2.1 System Model 

The out-of-plane dynamic model for the actuator-string system in Figure 
5.1 is assumed to be described by a PDE of the form 

PUtt (x, t) - Tau",,,, (x, t) = 0, 

with the following boundary conditions:1 

u (0, t) = ° 

(5.1) 

(5.2) 

1 Given the pinned boundary condition of (5.2), we also know that Ut (0, t) = o. 
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III 

P, To 

FIGURE 5.1. Schematic representation of the string-mass system. 

mUtt (L, t) + Tau", (L, t) = f (t) , (5.3) 

where p denotes the mass per unit length of the string; m denotes the 
mass of the actuator at the free boundary; To denotes the tension in the 
string; L denotes length of the string; x E [0, L] is the independent position 
variable; t is the independent time variable; u(x, t) denotes the transverse 
displacement at position x for time t; the subscripts x, t denote the par­
tial derivatives with respect to x, t, respectively; and f (t) is the boundary 
control force. The string model described above is based on the following 
assumptions: (i) the amplitude of the string displacement u(x, t) is assumed 
to be small, and (ii) the string is assumed to be under a constant tension 
To. 

Since the control strategies will consist of relatively simple functions, 
we will assume the existence of a unique solution for the dynamics given 
by (5.1) through (5.3) under the control. In addition, we will assume that 
the distributed variable u (x, t) and its time derivative Ut (x, t) belong to a 
space of functions that possess the following properties. 

Property 5.1: If the potential energy ofthe system given by (5.1) through 
(5.3), defined by 

1 {L 2 
IIp = "2To Jo u". (cr, t) dcr, (5.4) 
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is bounded Vt E [0,00) and Vx E [O,L], then :n u(x,t) is bounded 
uxn 

for n = 1,2, Vt E [0,00), and Vx E [O,L]. 

Property 5.2: If the kinetic energy of the system given by (5.1) through 
(5.3), defined by 

(5.5) 

is bounded Vt E [0,00), then :n Ut(x,t) is bounded for n = 0,1, 
uxn 

Vt E [0,00), and Vx E [O,L]. 

Remark 5.1 Prom a strict mathematical point of view, one might ques­
tion the above boundedness properties. However, from an engineering point 
of view, it seems reasonable to assume for a real physical system that if 
the energy of the system is bounded, then all the signals that make up the 
governing dynamic equations will also remain bounded. We also note that 
the experimental results given in this chapter seem to lend credence to the 
fact that these engineer-based properties are indeed true. Finally, a review 
of previous boundary control work seems to indicate that there is not a 
well-established method for checking the boundedness of signals for linear 
distributed parameter systems much less for nonlinear distributed parameter 
systems. 

5.2.2 Problem Statement 

The primary control objective is to design the boundary control force f(t) 
such that the string displacement u(x, t) is driven to zero Vx E [0, L] as 
t --+ 00. To facilitate the control design and the subsequent Lyapunov-type 
stability analysis, we first define an auxiliary signal, denoted by ",(t), as 
follows: 

", (t) = ut{L, t) + U X (L, t) . (5.6) 

In order to rewrite the dynamic boundary condition of (5.3) in terms of 
",(t), we first differentiate (5.6) with respect to time, mUltiply the result­
ing expression by m, and then utilize (5.3) to substitute for mUtt(L, t) to 
produce 

mr,(t) = mUxt(L, t) - Toux(L, t) + f(t). (5.7) 

The above equation denotes the open-loop dynamics for the auxiliary signal 
",(t), and will form the basis for the design of the model-based and adaptive 
control laws. 
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5.2.3 Model-Based Control Law 

Given exact knowledge of the system model, we will now develop an expo­
nentially stabilizing controller for the system given by (5.1) through (5.3). 
Specifically, given the structure of the open-loop dynamics of (5.7), the 
boundary control force is designed as follows: 

f (t) = -mUxt (L, t) + Toux (L, t) - ks1] (t) , (5.8) 

where ks is a positive control gain. After substituting (5.8) into (5.7), we 
obtain the following closed-loop dynamics for 1] (t): 

mi] (t) = -ks1] (t) . (5.9) 

Theorem 5.1 The model-based boundary control law given by (5.8) en­
sures that the string displacement is exponentially regulated in the following 
sense: 

"Ix E [0, L], (5.10) 

provided the control gain ks is selected to satisfy the following inequality: 

To 
ks > 2' (5.11) 

where AI, A2, and A3 are some positive bounding constants, and the positive 
constant "'-0 is given by 

(5.12) 

Proof. To prove the above result, we define the following function: 

(5.13) 

where 

(5.14) 

and 

Ee (t) = 2{3p 1L CTUt (CT, t) Ua (CT, t) dCT, (5.15) 

with {3 being a positive weighting constant. While the form of the first two 
terms on the right-hand side of (5.13) is directly related to the total energy 
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of the string system (see (5.4) and (5.5)), the cross term2 Ec(t), although 
apparently lacking a physical interpretation, is crucial in the proof of (5.10). 

We now illustrate that for sufficiently small 13, the function V (t) in (5.13) 
will be a non-negative function. To this end, first note that the inequality 
(A.29) of Lemma A.13 in Appendix A can be used to upper bound Ec (t) 
of (5.15) as follows: 3 

Ec = 2f3p 1L aUtuada ::; 2f3pL 1L (u; + u;) da. (5.16) 

Also note that a lower bound can be placed on Es (t) of (5.14) as follows: 

Es 2': ~min{p,To} 1L (U; +u;) da. (5.17) 

We can now use (5.16) and (5.17) to establish the following inequalities: 

4f3pL E < E < 4f3pL E. 
min {p, To} S - c - min {p, To} S 

(5.18) 

If 13 is selected according to 

13 min {p, To} 
< 4pL ' 

(5.19) 

we can utilize (5.18) to state that 

(5.20) 

where ~ l' ~2 are some positive constants. From (5.20) and the definition of 
V (t) given in (5.13), we can formulate the bounds on V (t) as follows: 

(5.21) 

where 

. { 4f3pL m} 
Al = mm 1- min {p,To} '"2 { 4f3pL m} 

A2=max 1+ min{p,To}'"2 ' 
(5.22) 

2It is not clear who originally proposed the structure for the Ec(t) term in (5.15). 
We first observed the use of this type of "cross" term in [10J; however, we have since 
noted that other PDE-based control work often makes use of a similar term during the 
stability analysis (e.g., [8, 15]). 

3To reduce the notational complexity in most of the following derivations, the ar­
guments x, t will be left out of all spatial/time-dependent variables (e.g., u(x, t) will 
be denoted simply as u), while the argument t will be left out of the time-dependent 
variables (e.g., u",(L, t) will be denoted as u",(L)). 
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with {3 satisfying (5.19). Note that as a result of (5.19), Al and A2 will 
always be positive. 

We will now illustrate that for sufficiently small {3, the time derivative 
of V (t) will be a nonpositive function. To this end, we differentiate (5.13) 
with respect to time to obtain 

v (t) = Es (t) + Ec (t) - ksTJ2 (t) , (5.23) 

where (5.9) has been utilized. To determine Es (t) in (5.23), we differentiate 
(5.14) with respect to time to obtain 

(5.24) 

where (5.1) has been utilized. Integrating by parts, the first term on the 
right-hand side of (5.24), we get 

Es = Toux (L) Ut (L) , (5.25) 

where the boundary condition given in (5.2) has been applied. Based on 
the definition of (5.6), we can rewrite (5.25) as follows: 

(5.26) 

To obtain the expression for Ec (t), we differentiate (5.15) with respect 
to time, and then use (5.1) to produce 

(5.27) 

where 

(5.28) 

After integrating by parts, the right-hand side of the expression for AI, we 
obtain 

Al = 2{3p (LU; (L) - 1L U;dU) - 2{3p 1L UUtuatdu, (5.29) 

where (5.2) has been utilized. After noting that the last term on the right­
hand side of (5.29) is equal to AI, we can rearrange (5.29) to obtain 

(5.30) 
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We now follow the same procedure for A2 . That is, first integrating by 
parts, the right-hand side of the expression for A2 yields 

A2 = 2(370 (LU; (L) - 1L U;dO") - 2(370 1L O"uauaadO", (5.31) 

where (5.2) has been used. After noting that the last term on the right-hand 
side of (5.31) is equal to A2 , we can rearrange (5.31) to obtain 

A2 = (3 (TOLU; (L) - To 1L U;dO") . (5.32) 

We can now substitute (5.30) and (5.32) into (5.27), and then substitute 
the resulting expression along with (5.26) into (5.23) to produce 

V = - (~o_ (3PL) u; (L) - (~o -(3ToL) u; (L) 

(5.33) 

-(3p 1L u~dO" - (3To 1L u;dO" - (ks - ~o) 7]2. 

From (5.33), it is obvious that if ks is selected to satisfy (5.11) and (3 is 
selected according to 

(3 . {To I} < mIll 2pL' 2L ' (5.34) 

then V (t) can be upper bounded by a nonpositive function as shown below: 

(5.35) 

where (5.17) has been used and >'3 is a positive bounding constant defined 
as4 

>'3 = min { ks - ~o , 2(3 } . (5.36) 

From (5.21) and (5.35), we can obtain the following new upper bound for 
the time derivative of V (t): 

(5.37) 

After applying Lemma A.4 in Appendix A to (5.37), we have 

V(t)::; V (O)exp (- ~:t) ::; >'2 (Es (0) +7]2(0)) exp (-~:t), (5.38) 

4Note that A3 is positive as a result of the condition given in (5.11). 
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where (5.21) has been used. After utilizing (5.14), (5.21), and (A.25) of 
Lemma A.12 in Appendix A, we have 

2~ Tou2 (x, t) ::; ~To IoL 
u; (0", t) dO" ::; Es (t) ::; ;1 V (t) Vx E [0, L]. 

(5.39) 
The result given by (5.10) and (5.12) now directly follows by combining 
(5.38), (5.14), and (5.39). 0 

Remark 5.2 Note that the proof of Theorem 5.1 relies on the fact that 
the weighting constant (3 has been selected sufficiently small such that both 
conditions of {5.19} and {5.34} are satisfied. Thus, the overall condition on 
(3 can be expressed as follows: 

(3 . {min{P,To} To ~} 
< mm 4pL ' 2pL' 2L . (5.40) 

Remark 5.3 Prom {5.21} and {5.35}, we can state that Es (t) and"l (t) are 
bounded '<:It E [0, (0). Since Es (t) is bounded '<:It E [0, (0), we can use {5.14} 
and {A.25} of Lemma A.12 in Appendix A to show that u (x, t) is bounded 
Vt E [0,00) and Vx E [0, L]. Since Es (t) of {5.14} is bounded '<:It E [0, (0), 
the potential energy given by {5.4} is bounded '<:It E [0, (0); hence, we can use an 
Property 5.1 to show that -a u (x, t) is bounded for n = 1, 2, Vt E [0, (0) xn 
andVx E [0, L]. Since "l (t) andux (L, t) are bounded '<:It E [0, (0), we can use 
{5.6} to state that Ut (L, t) is bounded Vt E [0, (0). Prom the boundedness 
of Es (t) and ut (L, t), we can see that the kinetic energy of the system 
defined in {5.5} is boundedVt E [0,(0). Since the kinetic energy is bounded an 
Vt E [0, (0), we can use Property 5.2 to conclude that -a Ut(X, t) is bounded xn 
for n = 0, 1, '<:It E [0, (0) and Vx E [O,L]. Prom the above information, we 
can now state that all of the signals in the control law of {5.8} are bounded 
Vt E [0, (0). Finally, we can use {5.1}, {5.3}, and the above boundedness 
statements to show that Utt{x, t) is bounded '<:It E [0, (0) and Vx E [0, L]. 

5.2.4 Adaptive Control Law 

The control law given in (5.8) requires exact knowledge of some of the 
system parameters. We will now illustrate how the controller of (5.8) can 
be redesigned to compensate for constant parametric uncertainty while 
asymptotically stabilizing the string displacement. After taking note of the 
fact that the open-loop dynamics for "l (t) given by (5.7) can be linearly 
parameterized, we rewrite (5.7) in the following advantageous form: 

mil (t) = Y (uxt (L, t) , U X (L, t)) () + f (t) , (5.41) 
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where Y (-) E IRlX2 is a known regression matrix, and e E 1R2 is an unknown, 
constant parameter vector defined as follows: 

Y (-) = [ Uxt (L, t) -Ux (L, t) ] 
T e = [m To] . (5.42) 

Based on the form of (5.41), the boundary control force can now be designed 
as 

f(t) = -y(-)7J(t) - ks71(t), (5.43) 

where 71 (t) was defined in (5.6), and 7J (t) E 1R2 is a dynamic, parameter 
estimate vector defined as follows: 

7J (t) = [ m (t) To (t) r. (5.44) 

Based on the subsequent Lyapunov-type stability analysis, the parameter 
estimate vector is updated according to the following gradient update law: 

7J (t) = ryT (.) 71 (t) , (5.45) 

where r E 1R2x2 is a diagonal, positive-definite, adaptation gain matrix. If 
we define e (t) = e - 7J (t) E 1R2 as the parameter estimation error vector 
and then substitute (5.43) into (5.41), we obtain the following closed-loop 
dynamics: 

mr, (t) = -ks71 (t) + Y (.) e (t) e (t) = - ryT (-) 71 (t) , (5.46) 

where (5.45) was used to obtain the parameter estimation error dynamics. 

Theorem 5.2 The adaptive boundary control law given by {5.43} and {5.45} 
ensures that the string displacement is asymptotically regulated in the fol­

lowing sense: 

lim lu(x, t)1 = 0 Vx E [O,L], 
t_co 

(5.47) 

where the control gain ks defined in {5.43} must be selected to satisfy {5.11}. 

Proof. The following proof is based on arguments similar to those used in 
the proof of Theorem 5.1; hence, some of the details will not be repeated. 
First, we define the following function: 

1-T -
Va (t) = V (t) + 2e (t) re (t) , (5.48) 

where V (t) was defined in (5.13). If the constant (3 of (5.15) is selected suf­
ficiently small according to the condition given in (5.19), we can formulate 
the following bounds on Va (t): 

Ala ( Es (t) + 712 (t) + lie (t) 112) S; Va (t) S; A2a ( Es (t) + 712 (t) + lie (t) 112) 

(5.49) 
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for some positive constants .Ala and .A2a. After differentiating (5.48) with 
respect to time and substituting (5.1), (5.2), and (5.46), we can follow the 
derivations used in Theorem 5.1 to obtain the following upper bound for 
the time derivative of Va (t): 

Va(t)::;-.A3(Es (t)+7]2(t))+il(t) (yT(')7](t)+r- l B(t)) , (5.50) 

where .A3 was defined in (5.36) (the control gain ks defined in (5.43) must be 
selected according to (5.11) to ensure that .A3 is positive). After substituting 
the second equation of (5.46) into (5.50), we can simplify the upper bound 
on Va (t) to 

Va (t) ::; -.A3 (Es (t) + 7]2 (t)) ~ -ga (t). (5.51) 

We can now use (5.49), (5.51), and arguments similar to those outlined in 
Remark 5.3 to state that all signals in the control law of (5.43) and (5.45) 
are bounded \:It E [0,(0), and that all signals in the system given by (5.1) 
through (5.3) remain bounded Vt E [0,(0) and Vx E [0, L]. 

After differentiating ga (t) defined in (5.51) with respect to time, we have 

9a (t) = .A3 (Es (t) + 27] (t) i] (t)) . (5.52) 

Since we already know that all the system signals remain bounded Vt E 

[0, (0), we can use (5.25) and (5.46) to show that Es (t) and i] (t) are 
bounded Vt E [0, (0). From (5.52), it is easy to see that 9a (t) is bounded 
Vt E [0, (0); hence, we can now apply Lemma A.6 in Appendix A to (5.51) 
to show that 

lim Es (t) ,7] (t) = 0. 
t--.oo 

(5.53) 

Finally, the result given by (5.53) and the inequalities developed in (5.39) 
can be combined to state the result given by (5.47). 0 

5.2.5 Extensions 

The actuator-string system described by the linear field equation of (5.1) 
and linear boundary conditions of (5.2) and (5.3) have been formulated 
for small displacements u (x, t). We now discuss how the basic control laws 
given in previous sections can be redesigned to account for relatively large 
displacements of the string. 

A nonlinear PDE and nonlinear boundary conditions for the actuator­
string system depicted in Figure 5.1 can be formulated as follows [12]: 

PUtt (x, t) = T (y (t)) [ J1u~ ~i ~~, t) 1 x Vx E [0, L] (5.54) 
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ux(L,D ( mUtt(L,t)+T(y(t)) +W(Ut(L,t))¢=f t), 
Jl +u~ (x, t) 

(5.55) 

where the term W(ut(L, t))¢ is a linear parameterization representing ad­
ditional actuator dynamics (e.g., friction) with W(·) E 1R1Xp being a regres­
sion matrix and ¢ E IRP being a constant parameter vector. The tension 
function T (y (t)) introduced in (5.54) and (5.55) is assumed to have the 
following properties: (i) T (y (t)) is a strictly positive function that satisfies 

T(y(t)) 2: To> 0, (5.56) 

where y (t) is the string stretch represented by the following non-negative 
function: 

(5.57) 

(ii) if y (t) is bounded, then T (y (t)) is also bounded, and (iii) the potential 
energy stored in the string can be bounded as follows: 

am (t) :::; IIp = loy T (y (t)) dy :::; ~u (y (t)) , (5.58) 

where al is a positive constant, and ~u (.) is some continuous class K func­
tion.5 

Based on a more involved stability analysis than that used in Section 5.2.3 
(see [18] for details), we can redefine the model-based controller originally 
given in (5.8) as follows: 

f(t) = - mUxt(L, t) 3/2 + T (y(t)) ux(L, t) 

(1 + (ux(L, t))2) VI + (ux(L, t))2 
(5.59) 

+W(Ut(L, t))¢ - (k + ~ T (y(t))) 'l](t), 

where k, kr are positive control gains, and the variable 'l] (t), originally de­
fined in (5.6), is now defined as follows: 

( ( ux(L, t) 
'l] t) = Ut L, t) + . VI + (ux(L, t))2 

(5.60) 

As illustrated in [18], the controller given by (5.59) will asymptotically 
regulate the total energy of the system in contrast to the exponential result 
given in Theorem 5.1. 

5 A continuous function K,(P) is said to be class K if: (i) K, (0) = 0, (ii) K,(P) > 0 \/p > 0, 
and (iii) K,(P) is nondecreasing. 
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FIGURE 5.2. Schematic diagram of the experimental setup. 

By following the adaptive control derivations of Section 5.2.4, we can 
redesign the control law given by (5.59) as an adaptive controller that 
compensates for parametric uncertainty and asymptotically stabilizes the 
total energy of the system. For this new adaptive controller, the regression 
matrix Y ( Uxt (L, t), Ut (L, t)) E lR 1 x (l+p) and the unknown parameter vector 
BE lRl+P , originally defined in (5.42), are now defined as follows: 

-W(u,(L, tll 1 B=[m 

(5.61) 
Based on (5.59), the adaptive control force and parameter update law are 
designed as shown below: 

f(t) = -yoe+T(y(t)) ux(L,t) - (k+ krT(y(t))) 7](t) (5.62) VI + (ux(L, t))2 2 

(5.63) 

where e(t) E lRl+P is a dynamic estimate of the parameter vector Band 
r e E lR(1+p) x (l+p) is a diagonal, positive-definite, adaptation gain matrix. 
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5.2.6 Experimental Evaluation 

Experimental Setup 

Figure 5.2 shows a schematic diagram of the experimental setup used to 
implement the controllers. The setup consists of a string pinned at one end 
and attached to a linearly translating gantry at the other end. A brushed 
DC motor (Baldor model 3300) drives the gantry via a belt-pulley trans­
mission. The gantry rides on two parallel 1-inch-diameter steel rods with 
linear bearings. The displacement of the gantry u (L, t) is obtained from 
a 1,000-count rotary encoder attached to the motor shaft. The static and 
dynamic measurement of the string tension T (t) is obtained from a force 
sensor attached to the pinned-end of the string. A hollow-shaft 1,000-count 
rotatory encoder is mounted on the gantry to measure the string deflection 
angle U X (L, t) at the free-end. A mounting bracket attached to the gantry 
ensured that the string was held tangent to the rotary encoder. 

A Pentium 166 MHz PC running QNX hosted the control algorithm 
while Qmotor provided the environment to write the control algorithm in 
the C programming language. The Quanser MultiQ I/O board [14] pro­
vided for data transfer between the computer subsystem and the electrical 
interface. All the controllers were implemented using a sampling period of 
0.5 msec. The velocity of the gantry and the time derivative of the string 
deflection angle were obtained by using a backwards difference algorithm 
applied to the gantry position and the string deflection angle, respectively. 
To eliminate quantization noise, the velocity signals were filtered using a 
second-order digital filter. The parameter values for the mechanical system 
were determined via standard test procedures to be 

m = 3.5 kg, p = 0.03 kg/m, L = 1.3 m. 

Experimental Results 

Five experiments were conducted to assess the performance of the afore­
mentioned controllers. The transient response to a consistent initial dis­
placement was studied with all control gains tuned to provide the best 
response. Figure 5.3 shows the string response to the initial displacement 
without control (i.e., f(t) = 0). The response decays under natural damp­
ing in approximately 10 sec. In Figure 5.4, a simple damper control law 
given by 

f (t) = -kdUt (L, t) (5.64) 

achieved the best regulation results with kd 4.25, and decreased the 
settling time to approximately 7 sec. 
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The linear, small-displacement, model-based controller of (5.8) was im­
plemented with To = 29.75 N and ks = 47.23, and its performance is shown 
in Figure 5.5. Note that the inclusion of string slope feedback in the con­
trollaw reduced the settling time to 6 sec. The fourth experiment used the 
nonlinear, large-displacement, model-based control of (5.59) with 

WO = [ sgn(Ut(L, t)) Ut(L, t) ] 
T 

¢ = [Fs Fd] , (5.65) 

where sgn (.) is the standard signum function, and Fs and Fd are the static 
and dynamic friction coefficients, respectively. The friction coefficients were 
experimentally determined to be Fs = 1.05 N and Fd = 15.23 Njm-sec. The 
best regulation results were achieved with k = 3.0 and kr = 3.12. Figure 
5.6 shows the angular deflection U X (L, t), the gantry displacement u (L, t), 
the time-varying tension signal T (t), and the control voltage resulting from 
the initial displacement. The nonlinear control response is slightly improved 
compared to the linear controL Finally, the adaptive controller defined by 
(5.62) and (5.63) was implemented (see Figure 5.7). The parameter esti­
mates were initialized to 25% of their nominal values and the best regula­
tion was achieved with k = 3.0, kr = 2.97, and r = diag {2.55, 50, 0.69} . 
Again, the response is similar to that of the previous two controllers. 

The following table compares the experimental performance of the con­
trollers by computing the root mean square (RMS) of the string deflection 
angle over a 10 sec time interval. The trends in the RMS data mirror the 
settling time performance, showing that the adaptive controller provides a 
12% improvement in performance with similar control effort as compared 
to the damper controller. 

Controller Type RMS U X (L,t) RMS control 
deg voltage V 

Open-loop system 2.75 -
Damper controller 1.98 4.91 
Linear controller 1.94 6.25 

Nonlinear controller 1.70 7.30 
Nonlinear adaptive controller 1.77 5.32 

Remark 5.4 The control force at the actuator was actually applied by 
rescaling this force as a desired motor torque. The desired motor torque was 
then achieved by using a high-gain current feedback loop (for the brushed 
DC motor T (t) <X I (t) where T (t) is the motor torque and I (t) is the 
motor current). The current feedback loop and the torque-force conversion 
were incorporated into the control software and power was supplied to the 
motor by the single-channel, linear power amplifier is capable of outputting 
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up to 1000 Wat 100 V with a power bandwidth of a to 40 kHz. It should 
be noted that the backstepping paradigm {9] allows the electrical dynamics 
to be incorporated in the overall control solution for this class of hybrid 
partial/ordinary differential equation problems as illustrated in Baicu et al. 
{2J. 
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FIGURE 5.3. Open-loop response: u'" (L, t). 

!-::r· · ··········i·~~····· ····1 •• • ••. ··.· ··1 - 20_ ...... : .. "" .. ,,~ ....... _ . _ 

o 1 234 5 6 7 

'~r i ~.m ... :.m .,==-.~:" '''''·''''I~:''''''''''''li.·'''' ""': '1 _-<1.0' ........ .. : ............... ~'."'''' .... : ........... : ............ , ......... _ 

.s~:: .:::::'::::::::: : .... :;::::.:::.:::::,:::::.::: :::t ::: ': :: .. ::::"::."::'::\::'::::::." 
-<1.040 1 2 3 4 5 6 7 . '~r m T t~.S m ... ' ......... : .. j 

-so _ . ... . ' : ~~ .... ~.====-= ........ :. . .... :... ... _ 
-1000 1 2 3 4 5 6 1 

Tlme 1""'1 

FIGURE 5.4. Damper controller: (a) U X (L, t), (b) u (L, t), and (c) control voltage. 
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5.3 Cable System 

In this section, we develop control strategies for a distributed cable model. 
The control design and analysis described in the following will tread on 
the steps of those developed for the string system of Section 5.2. Specifi­
cally, we develop a model-based controller that exponentially stabilizes the 
displacement of the cable given exact knowledge of the mechanical sys­
tem parameters and measurements of the slope, slope-rate, and velocity 
at the cable's actuated boundary. We then illustrate how the model-based 
controller can be redesigned as an adaptive controller, which asymptoti­
cally stabilizes the cable displacement, while compensating for parametric 
uncertainty. 

5.3.1 System Model 

The profile view of Figure 5.8 shows a cable sagging under gravity loading. 
The cable vibrates perpendicular to the plane formed by the equilibrium 
cable configuration. The top view in Figure 5.8 shows the out-of-plane 
displacement U(S, T), where S is the arc length coordinate and T is time. 
The left boundary is pinned and the right boundary is free to translate in 
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F(T) 

FIGURE 5.8. Schematic diagram of the cable system: (a) top view and (b) side 
view. 

the out-of-plane direction. A control force F(T) is applied in the out-of­
plane direction at the left boundary. The linearized out-of-plane equation 
of motion for this cable system is given by [1] 

pAUTT (8, T) - [P(8)Us (8, T)]s = 0, (5.66) 

where pA is the cable mass/length, and the subscripts 8 and T indicate 
partial differentiations with respect to the independent spatial and time 
variables 8 and T, respectively. The equilibrium tension P (8) is defined 
as follows: 

(5.67) 

where Po is the midspan (8 = L/2) or horizontal component of the ~able 
tension, g is the acceleration owing to gravity, and L is the cable length. 
The pinned boundary condition at 8 = ° is given by 

U(O,T) = 0, (5.68) 

and the dynamic boundary condition at 8 = L is given by 

MUTT (8, T) + P(8)Us (8, T) = F (T) , (5.69) 
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where M is the actuator mass. To simplify the control development, we 
substitute the following nondimensional variables: 

S 
x=L' 

M 
m= pAL' 

p(x) = P(S) = p~ + (x __ 21)2, 
pAgL 

Po 
Po=-­

pAgL 

into (5.66)-(5.69) to yield the following field equation: 

Utt(x, t) - [P(x)ux(x, t)]x = ° Vx E [0,1]' 

with the following boundary conditions:6 

U(O, t) = ° 
mUtt (1 , t) + p(l)ux(l, t) + Y(ut(l, t))¢ = f(t), 

(5.70) 

(5.71) 

(5.72) 

(5.73) 

where the term Y(ut(l, t))¢ has been added to account for friction and/or 
damping in the actuator. We will assume that the actuator friction/damping 
can be linearly parameterized by a known regression matrix Y(ut(l, t)) E 

~lxq multiplied by a constant parameter vector ¢ E ~q. For example, an 
actuator with viscous and Coulomb friction can be parameterized as fol­
lows: 

Y(Ut{l, t)) = [ ut(l, t) sgn(ut(l, t)) ] 
T 

¢=[b It] , (5.74) 

where b and It denote the viscous and Coulomb friction coefficients, re­
spectively. For ~ general parametrization, we will assume that Y(ut(l,t)) 
remains bounded Vt E [0,00) ifut(l,t) is bounded Vt E [0,00). 

Since the control strategies will consist of relatively simple functions, we 
will assume the existence of a unique solution for the dynamics given by 
(5.71) through (5.73) under the control. In addition, based on the argu­
ments stated in Remark 5.1, we will assume that the distributed variable 
U (x, t) and its time derivative Ut (x, t) belong to a space of functions which 
possess the following properties. 

Property 5.3: If the potential energy ofthe system given by (5.71) through 
(5.73), defined by 

1 r1 
ITp = 2. io P (0-) u; (0-, t) do-, (5.75) 

fiThe pinned boundary condition of (5.72) implies that Ut(O, t) = O. 
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an 
is bounded Vt E [0,00), then -a u(x,t) is bounded for n = 1,2, xn 
Vt E [0,00), and Vx E [0,1]. 

Property 5.4: If the kinetic energy of the system given by (5.71) through 
(5.73), defined by 

1 r1 2 1 2( ) Ih = 2 io Ut (a, t)da + 2mut 1, t , (5.76) 

is bounded Vt E [0,00), then ~n Ut(x, t) is bounded for n = 0,1, 
uxn 

Vt E [0,00), and Vx E [0,1]. 

5.3.2 Problem Statement 

As in Section 5.2, the primary control objective is to design the boundary 
control force J(t) such that the cable displacement u(x, t) is driven to zero 
Vx E [0,1] as t -t 00. To facilitate the control design and the subsequent 
stability analysis, we define an auxiliary signal, denoted by "l(t) , as follows: 

"l (t) = ut(l, t) + ux(l, t). (5.77) 

In order to rewrite the dynamic boundary condition of (5.73) in terms of 
"l(t), we first differentiate (5.77) with respect to time, multiply the resulting 
expression by m, and then utilize (5.73) to substitute for mUtt(l, t) to 
produce 

miT (t) = mUx t(l, t) - p(l)ux (l, t) - Y(ut(l, t))¢ + J (t). (5.78) 

The above equation denotes the open-loop dynamics of the auxiliary signal 
"l(t) and will form the basis for the design of the model-based and adaptive 
control laws. 

5.3.3 Model-Based Control Law 

Given exact knowledge ofthe system model given by (5.71) through (5.73) 
and the structure of the open-loop dynamics given by (5.78), the model­
based control law is defined as follows: 

J (t) = -muxt(l, t) + p(l)ux (l, t) - ks (ut(l, t) + u x (l, t)) + Y(ut(l, t))¢, 
(5.79) 

where ks is a positive control gain. After substituting (5.79) into (5.78), we 
obtain the following closed-loop dynamics on the boundary: 

miT (t) = -ks"l (t) . (5.80) 
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Theorem 5.3 The model-based boundary controller given by (5.79) en­
sures that cable displacement is exponentially regulated in the following 
sense: 

lu(x, t) I ::; 'fix E [0,1]' (5.81) 

where .AI, .A2, and .A3 are some positive bounding constants, the positive 
constant K.o is given by 

(5.82) 

and the control gain ks defined in (5.79) must be selected to satisfy the 
following inequality: 

k > p(l) 
s 2· (5.83) 

Proof. To prove the result of (5.81), we begin with the following function: 

(5.84) 

where Es (t) and Ec (t) are defined as 

1 rl 1 rl 
Es(t) = 2 io u;(a, t)da + 2 io p(a)u;(a, t)da (5.85) 

(5.86) 

with (3 being a positive weighting constant and the weighting function 9 (x) 
being defined as follows: 

g(x) = ~~; [tan- l (2~~ 1) + Po In (2x - 1 + hex)) 

+tan- l (2~o) - Po In (J4p~ + 1-1)] , 

where the auxiliary function h (x) is given by 

hex) = J4P5 + 4x2 - 4x + 1. 

(5.87) 

First, note that the inequality (A.29) of Lemma A.13 in Appendix A can 
be used to upper bound Ec(t) of (5.86) as follows: 
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::; min (1,po) 2Jo ut+p(a)uu da , 4,8g(1) [1 rI 
( 2 2) I 

5.88) 
where we have used the facts that p( x) attains its minimum value at x = 1/2 
for x E [0,1J and g(x) of (5.87) attains its maximum value at x = 1 for 
x E [0,1J. We can now use (5.85) and (5.88) to establish the following 
bounds on Ee: 

_ 4,8g(1) E < E < 4,8g(1) E' 
min (1,po) s - e - min (1,po) s, 

hence, if ,8 is selected according to the following sufficient condition: 

a min {1,po} 
fJ < 4g(1) , 

we have 

(5.89) 

(5.90) 

(5.91) 

where '1 and '2 are some positive bounding constants. Given the struc­
ture of V(t) defined in (5.84) and the inequality given by (5.91), if the 
des~gn constant ,8 is selected according to (5.90), then we can formulate 
the following bounds on V (t): 

where the positive constants Al and A2 are given by 

. { 4,8g(1) m} 
Al =mm 1- min{1,po}'2 { 4,8g(1) m} 

A2 = max 1+ min{1,po}'2 . 
(5.93) 

After differentiating (5.84) with respect to time, we have 

V (t) = Es (t) + Ee (t) - ks"72 (t) , (5.94) 

where (5.80) has been used. To determine Es(t) in (5.94), we differentiate 
(5.85) with respect to time to obtain 

Es = 101 Ut [p(a)uuJu da+ 101 p(a)uuuutda, (5.95) 
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where (5.71) has been used. If we integrate by parts, the first term on the 
right-hand side of (5.95), we obtain 

Es = p(l)ut(l, t)ux(l, t) - p(O)Ut(O, t)ux(O, t). (5.96) 

After applying the boundary condition given in (5.72) to (5.96), we have 

(5.97) 

which can be rewritten as 

Es = _P~l) (u;(l, t) + u~(l, t)) + P~l) ry2 (5.98) 

upon application of (5.77). 
To determine Ec(t) in (5.94), we differentiate (5.86) with respect to time 

to obtain 

(5.99) 

where 

Al = 2(31
1 

g(a)Utuutda A2 = 2(31
1 

g(a)uu [p(a)uulu da, 

(5.100) 
and (5.71) has been used in the expression for A2. After integrating by 
parts, the expression for AI, we obtain 

Al = 2(3 (9(1)U;(1, t) -11 
gu(a)U;da) - 2(31

1 
g(a)uututda, (5.101) 

where we have used thE: fact from (5.87) that g(O) = O. After noting that 
the last term in (5.101) is equal to AI, we can write 

Al = (3 (9(1)U;(1, t) - 11 gu(a)U;da) , 

where gx(x) can be calculated from (5.87) as follows: 

gx(x) = 4~:~:) [tan-1 (2~~ 1) + Po In (2x - 1 + h(x)) 

h( x) ( 1 Po (2 + ~ ) ) + -- + --'-----,..-'--
2po Po (1 + (2~;l)2) 2x -1 + h(x) . 

(5.102) 

(5.103) 
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It is not difficult to show from (5.103) that gx(x) ~ 1 for x E [0, 1J; hence, 
we can utilize (5.102) to construct the following upper bound for AI: 

Al ~ (3 (9(1)Ut (1, t) - 11 utda) . (5.104) 

After integrating by parts, the expression for A2 given in (5.100), we 
obtain 

A2 = 2(3 (9(1)P(1)u;(1, t) -11 
ga(a)p(a)u;da -11 

g(a)p(a)uauaada) , 

(5.105) 
where we have used the fact that g(O) = o. After noting that the expression 
for A2 given in (5.100) can be expanded into the following form: 

(5.106) 

we can combine (5.105) and (5.106) to eliminate the last term in (5.105) 
as follows: 

A2 = (3 (9(1)P(1)U;(1, t) -11 
[ga(a)p(a) - g(a)Pa(a)J U;da). (5.107) 

From the structure of g(x) and p(x), it is straightforward to show that 

gx(x)p(x) - g(x)px(x) = 1 + p(x); (5.108) 

thus, we can use (5.107) and (5.108) to construct the following upper bound 
for A2: 

(5.109) 

After substituting (5.104) and (5.109) into (5.99), and then substituting 
the resulting expression along with (5.98) into (5.94), we have 

11 ~ - (P~l) _ (39(1)) ur(1, t) - (P~l) - (39(1)P(1)) u; (1, t) 

- (ks - P~l)) 7]2 - 2(3Es, 

(5.110) 
where the definition of (5.85) has been utilized. From (5.110), it is clear that 
if the controller gain ks is selected according to (5.83) and the weighting 
constant (3 is selected according to 

. {P(l) 1} 
(3 < mm 2g(1) , 2g(1) , (5.111) 
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then V(t) can be upper bounded by the following nonpositive function: 

(5.112) 

where the positive constant 7 A3 is defined by 

. { p(1) } A3 = mm 2(3,ks - -2- . (5.113) 

From (5.92) and (5.112), we obtain the following upper bound for the 
time derivative of V (t): 

. A3 
V(t) ~ - A2 V(t), (5.114) 

whose solution, according to Lemma A.4 in Appendix A, yields 

V(t) ~ V(O)exp (- ~:t) ~ A2~oexp (- ~:t) . (5.115) 

Note that (5.85), (5.92), and (5.82) have been utilized to formulate the 
inequality on the right-hand side of (5.115). In addition, we can use (A.25) 
of Lemma A.12 in Appendix A, (5.85), and (5.92) to formulate the following 
inequality: 

p 1 fl 1 
; u2 (x, t) ~ '2 Jo p(a)u~(a, t)da ~ Es(t) ~ Al V(t) Vx E [0,1]. 

(5.116) 
The inequality given in (5.81) now directly follows by combining (5.115) 
and (5.116). 0 

Remark 5.5 The proof of Theorem 5.3 relies on the fact that the weighting 
constant (3 has been selected sufficiently small such that the inequalities 
of (5.90) and (5.111) are satisfied. Thus, an overall condition on (3 can 
be obtained by combining both inequalities, similaTly to what was done in 
Remark 5.2. We also note that the structure of the weighting function g(x) 
defined in (5.87) has been crafted to facilitate the construction of the bounds 
given in (5.92) and (5. 112}. 

Remark 5.6 Utilizing similar arguments as in Remark (5.3) and Prop­
erties 5.3 and 5.4, we can easily illustrate the boundedness of all systems 
signals during closed-loop operation. 

Remark 5.7 It should be noted that some extensions to the basic control 
law given in (5.79) can be developed to improve the closed-loop performance. 

7The control gain ks must satisfy (5.83) to ensure that .A3 is positive. 
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For example, an additional control gain can be included in the definition of 
the tracking variable 7](t) defined in (5.77) as follows: 

7] (t) = ut(l, t) + aUx(l, t), (5.117) 

where a is a positive control gain. As a result, we can redefine the control 
force as 

f (t) = -mauxt(l, t) + p(l)ux(l, t) - ks7] (t) + Y(ut(l, t))¢. (5.118) 

5.3.4 Adaptive Control Law 

In this section, we redesign the model-based controller of (5.79) to compen­
sate for constant parametric uncertainty while asymptotically stabilizing 
the cable displacement. 

First, note that the open-loop dynamics for 7](t) given in (5.78) can be 
rewritten as 

mi] (t) = W (uxt (1, t) ,Ux (1, t) ,Ut (1, t)) e + f (t), (5.119) 

where W(·) E ~lX(q+2) is a known regression matrix and e E R(q+2)Xl is 

the unknown, constant parameter vector defined as follows: 

W (.) = [uxt(l, t) -ux(l, t) -Y(ut(l, t)) ] 

e= [m p(l) ¢T (. 

(5.120) 

From the structure of (5.78), the adaptive control law is designed as follows: 

f(t) = -W(·)B(t) - ks7](t), (5.121) 

where B(t) E ~(q+2)Xl is a dynamic parameter estimate vector defined as 

A [ __ T ]T e (t) = in (t) p(l, t) ¢ (t) . (5.122) 

The parameter estimates are updated according to 

B (t) = rwT (-) 7] (t) , (5.123) 

where r E ~(q+2)x(q+2) is a diagonal, positive-definite, adaptation gain 
matrix. After substituting (5.121) into (5.119), we obtain the following 
closed-loop dynamics on the boundary: 

mi](t) = -ks7](t) + W(.)B(t) B (t) = -rwT (.) 7] (t), (5.124) 

where B(t) = e - B(t) E ~(q+2)Xl denotes the parameter estimation er­
ror, and (5.123) has been used to obtain the parameter estimation error 
dynamics. 
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Theorem 5.4 The adaptive boundary controller given by {5.121} and 
{5.123} ensures that the cable displacement is asymptotically regulated in 
the following sense: 

lim lu(x, t)1 = 0 \Ix E [0,1]' 
t-HXJ 

(5.125) 

where the controller gain ksdefined in {5.121} must be selected to satisfy 
{5.83}. 

Proof. The following proof is based on arguments similar to those used in 
the proofs of Theorems 5.2 and 5.3; hence, most of the details will not be 
repeated. First, we define the following function: 

1-T 1-
Va(t) = V(t) + 28 (t)r- 8(t), (5.126) 

where V(t) was defined in (5.84). If the design constant f3 of (5.86) is 
selected to be sufficiently small according to the condition given in (5.90), 
we can formulate the following bounds on Va (t): 

Ala [Es(t) + 1]2(t) + Ile(t)ln ::; Va(t) ::; A2a [Es(t) + rht) + Ile(t)ln ' 
(5.127) 

for some positive constants Ala and A2a. 
After differentiating (5.126) with respect to time, and substituting from 

(5.71), (5.72), and (5.124), we can proceed as in the proof of Theorem 5.3 
to obtain the following upper bound for the time derivative of Va(t): 

where A3 was defined in (5.113) (the control gain ks defined in (5.121) has to 
be selected according to (5.83) to ensure A3 is positive). After substituting 
the second equation of (5.124) into (5.128), we can simplify the upper bound 
on Va (t) to 

(5.129) 

The proof of Theorem 5.2 can now be directly followed to show that 

lim Es(t),1](t) = O. 
t-+oo 

(5.130) 

We can now use the result given by (5.130) and the inequality-type bound 
developed in (5.116) to state the result given by (5.125). 0 
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5.3.5 Experimental Evaluation 

Experimental Setup 

The boundary controllers were implemented on an experimental setup sim­
ilar to the one described in Section 5.2.6 with a braided polyester rope 
replacing the string. A 486 PC hosting a Texas Instruments TMS320C30 
DSP board served as the computational engine. WinM otor provided the 
environment to write the control algorithm in the C programming language. 
An encoder interface card (Integrated Motions Inc. Model DS-2) allowed 
for quadrature extrapolation of the encoder signals. The values for the me­
chanical system parameter defined in (5.70) were determined via standard 
test procedures to be 

M = 3.229 kg, L = 2.69 m, pA = 0.085 kg/m, Po = 0.127 N, 

m = 14.1, Po = 0.056, p(l) = 0.503. 

To test the performance of the controllers, the cable was perturbed using 
a disturbance input applied to the cable's pinned-end. Since dimensional 
quantities were used in the experiment, the applied boundary control force 
was scaled according to (5.70) (i.e., F = fpAgL). This implies that the 
weight of the cable must be known in order to implement the controllers. 

Experimental Results 

First, the model-based controller given by (5.118) was implemented using 
the following settings: 

ks = 5.0, a: = 4.0, Y(Ut(l, t))¢ = 0, 

where the gains were tuned for the best performance. The results of these 
experiments appear in Figure 5.9. As is clear from the figure, the cable sys­
tem exhibits excellent transient response under the controller. The uncon­
trolled swing of the cable to the disturbance input is shown for comparison 
purposes. The gantry position and the motor voltage signal are also shown. 
It should also be noted that the Y(ut(l, t))¢ term could have been used 
to model static friction on the rail of the actuator; however, the feedback 
portion of the controller seemed to adequately compensation for friction in 
this experiment. 

The adaptive controller of (5.121) and (5.123) was then implemented 
with the parameter estimates initialized to 80% of their nominal values. 
The best performance was achieved using the following settings: 

ks = 5.0, a: = 4.0, Y(ut(l, t))¢ = 0, r = diag{5,2}. 
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FIGURE 5.9. Model-based controller: (a) u(l, t), (b) gantry position, and (c) 
motor voltage. 

The results of this experiment appears in Figure 5.10. In the first subplot 
of Figure 5.10, the transient performance of the adaptive controller to the 
disturbance is compared to the uncontrolled swing of the cable. Subsequent 
subplots show the gantry position, the motor voltage and the parameter 
estimates. 

5.4 Notes 

To understand the vibration of cable-like structures, many researchers have 
developed sophisticated modeling and analysis techniques (see Irvine [7J 
for a review). Small sag approximation techniques (Soler [16]), lumped 
parameter models (West et ai. [17]), finite element techniques (Fried [4]), 
and Galerkin methods (Perkins and Mote [13]) represent several approaches 
used to predict the behavior of cables in a variety of applications. 

Active vibration control has only recently been applied to string and ca­
ble systems. For example, Fujino et al. [5J developed axial boundary force 
control laws for a single mode cable model and experimentally demon­
strated a large reduction in peak resonant response. This approach was 
later extended to multiple cable modes in [6J. Baicu et al. [lJ developed a 
linear boundary controller for the out-of-plane vibration of a distributed 
cable model that required boundary position, velocity, and slope feedback. 
An adaptive boundary control scheme for out-of-plane cable vibrations was 
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FIGURE 5.10. Adaptive controller: (a) u(l, t), (b) gantry position, and (c) motor 
voltage, (d) P(1), and (e) m. 

proposed in Canbolat et aL [3] that compensated for unknown, constant 
boundary mass, tension, and friction effects. Boundary control work for 
string-like dynamic models can be found in Morgiil [11], Shahruz et aL 
[15], and Zhang et aL [18]. Interestingly, the model-based control law pre­
sented in Section 5.3 reduces to a form that is similar to the one given in 
Morgiil [11] if the cable tension is assumed to be constant. 
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6 
Cantilevered Beams 

6.1 Introduction 

In many distributed parameter mechanical systems, the flexible element 
can be modeled as a beam-type structure (e.g., space structures, flexible 
link robots, helicopter rotor/blades, turbine blades, etc.). The most com­
monly used beam model is based on the classical Euler-Bernoulli theory, 
which provides a good description of the beam's dynamic behavior when 
the beam's cross-sectional dimensions are small in comparison to its length 
(Le., this model neglects the rotary inertia of the beam). A more accurate 
beam model is provided by the Timoshenko theory, which takes into ac­
count not only the rotary inertial energy but also the beam's deformation 
owing to shear. As discussed in [15], the Timoshenko beam model has been 
shown to have a broader applicability than the Euler-Bernoulli model. In 
[1], Aldraihem et al. compared the accuracy and validity ofthese two beam 
models by simulating a cantilevered beam under distributed piezoelectric 
sensoring/actuation. The results provided in [1] indicated that the Tim­
oshenko model is superior to the Euler-Bernoulli model in predicting the 
beam's response. While the Timoshenko model may be more accurate at 
predicting the beam's response in comparison to the Euler-Bernoulli model, 
the Timoshenko model is more difficult to utilize for control design pur­
poses owing to its higher order. For this reason, the design of boundary 
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controllers for flexible-beam-type structures has been based mainly on the 
Euler-Bernoulli model. 

In this chapter, we develop boundary control strategies for the Euler­
Bernoulli and Timoshenko models of a cantilevered flexible beam. To pro­
vide a more accurate description of the system model, the PDEs for the 
beam dynamics are augmented to include the ODEs for the mass/inertial 
dynamics of a rigid payload and/or boundary actuator located at the 
beam's free end-point. The control strategies, which explicitly exploit th~ 
structure of the hybrid PDE-ODE dynamic model, are designed with the 
objective of regulating the beam vibration. As in Chapter 5, both model­
based and adaptive control laws are formulated. The model-based controller 
provides a stepping stone towards the synthesis of the adaptive controller, 
which is designed to cope with constant, parametric uncertainty. 

6.2 Euler-Bernoulli Beam 

In this section, we consider the problem of stabilizing the distributed dis­
placement of a cantilevered Euler-Bernoulli beam with actuator dynam­
ics at the beam's free end-point. The control strategy is composed of a 
boundary control force applied to the beam's free end-point and requires 
measurements of the beam's end-point shear, shear-rate, and velocity. A 
model-based controller is first developed that exponentially regulates the 
displacement of the beam. We then illustrate how the model-based con­
troller can be redesigned as an -adaptive controller that asymptotically reg­
ulates the displacement of the beam while compensating for parametric 
uncertainty. 

Actuator mass 

x 

~:4~--------------L--------------~~ 

FIGURE 6.1. Schematic representation of a cantilevered Euler-Bernoulli beam 
with end-point payload/actuator mass. 
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6.2.1 System Model 

The model for the cantilevered Euler-Bernoulli beam system shown in Fig­
ure 6.1 is described by a PDE of the form [12] 

PUtt (x, t) + Eluxxxx(x, t) = 0, 

with the following boundary conditions:1 

u(O, t) = ux(O, t) = uxx(L, t) = ° 
and 

mUtt(L, t) - Eluxxx(L, t) = f(t), 

(6.1) 

(6.2) 

(6.3) 

where x and t represent the independent spatial and time variables, respec­
tively; u(x, t) denotes the beam displacement at the position x for time t; 
p is the mass/length of the beam; EI is the bending stiffness of the beam; 
L is the length of the beam; m represents the payload/actuator mass at­
tached to the free end-point of the beam; the subscripts x, t denote the 
partial derivatives with respect to x, t, respectively; and f(t) denotes the 
boundary control input force. 

Since the control strategies will consist of relatively simple functions, we 
will assume the existence of a unique solution for the dynamics given by 
(6.1) through (6.3) under the control. In addition, based on the arguments 
outlined in Remark 5.1, we will assume that the distributed variable u(x, t) 
and its time derivative Ut(x, t) belong to a space of functions that have the 
following properties. 

Property 6.1 If the potential energy ofthe system given by (6.1) through 
(6.3), which is given by 

rIp = ~EA 1L u'~ur (0', t) dO', (6.4) 

is bounded Vt E [0, (0) and Vx E [0, L], then aan u( x, t) is bounded 
xn 

for n = 2, 3, 4, Vt E [0,(0), and Vx E [O,L]. 

Property 6.2 If the kinetic energy of the system of (6.1) through (6.3), 
which is given by 

(6.5) 

1 Given the clamped-end boundary conditions of (6.2), we also know that Ut(O, t) = 

Uxt(O, t) = 0. 
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is bounded Vt E [0,00), then :n Ut(x,t) is bounded for n = 0,1,2, 
uxn 

3, Vt E [0,00), and "Ix E [0, LJ. 

6.2.2 Problem Statement 

The primary control objective is to design the boundary control force f(t) 

such that the beam displacement u(x, t) is driven to zero "Ix E [0, LJ as 
t -+ 00. To facilitate the control design and the subsequent Lyapunov-type 
closed-loop stability analysis, we first define an auxiliary signal, denoted 
by 'TJ(t), as follows: 

'TJ(t) = ut(L, t) - uxxx(L, t). (6.6) 

We now rewrite the dynamic boundary condition of (6.3) in terms of'TJ(t). 
To this end, we differentiate (6.6) with respect to time, multiply the result­
ing expression by m, and then utilize (6.3) to substitute for mUtt(L, t) to 
produce 

mr,(t) = -muxxxt(L, t) + EIuxxx(L, t) + f(t). (6.7) 

The above open-loop equation will form the basis for the design of the 
model-based and adaptive control laws. 

6.2.3 Model-Based Control Law 

Given exact model knowledge, we will now design an exponentially stabi­
lizing controller for the system given by (6.1) through (6.3). Specifically, 
given the structure of the open-loop dynamics of (6.7), the control force is 
designed as follows: 

f(t) = mUxxxt(L, t) - Eluxxx(L, t) - ks'TJ(t), (6.8) 

where ks is a positive control gain. After substituting (6.8) into (6.7), we 
obtain the following closed-loop dynamics for 'TJ(t): 

mr,(t) = -ks'TJ(t). (6.9) 

Theorem 6.1 The model-based boundary control law given by (6.8) en­

sures that the beam displacement is exponentially regulated in the following 

sense: 

"Ix E [0, L], (6.10) 

provided the control gain ks is selected to satisfy the following inequality: 

EI 
k S >2' (6.11) 



www.manaraa.com

6.2 Euler-Bernoulli Beam 167 

where AI, A2, and A3 are some positive bounding constants, and the positive 
constant liD is given by 

1 {L 2 1 {L 2 ( ) 2 
liD = '2 P io ut (a, O)da + '2E1 io uaa(a, O)da + (ut(L, 0) - Uxxx L,O) . 

(6.12) 

Proof. To prove the result given by (6.10), we begin by defining the fol-
lowing function: 

(6.13) 

where the beam's energy-related term Eb(t) and the "cross" term Ee(t) are 
defined as 

(6.14) 

and 

(6.15) 

with (3 being a positive weighting constant, which can be made sufficiently 
small to ensure Vet) is always non-negative. To see this, first note that the 
inequality (A.29) of Lemma A.13 in Appendix A can be used to bound 
Ee(t) of (6.15) as follows: 2 

Ee = 2{3p IoL 
aUtuada ::; 2{3pL IoL 

(u; + u;) da. (6.16) 

After applying the inequality (A.27) of Lemma A.12 in Appendix A to the 
u~ term on the right-hand side of (6.16), we obtain 

Ee ::; 2{3PLmax{1,L2 }IoL (U;+U;a)da 

(6.17) 

max{1,L2 }1{L( 2 2) 
< 4{3pL min {p, EI} 2 io pUt + E1uaa . 

We can now use (6.14) and (6.17) to establish the following inequalities: 

max{1,L2} max{1,L2} 
-4{3pL min {p, E1} Eb ::; Ee ::; 4{3pL min {p, E1} Eb. (6.18) 

2To reduce the notational complexity in most of the following derivations, the ar­
guments x, t will be left out of all spatial/time-dependent variables (e.g., u(x, t) will 
be denoted simply as u), while the argument t will be left out of the time-dependent 
variables (e.g., ux(L, t) will be denoted as ux(L)). 
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If (3 is selected according to 

min{p,El} 
(3 < 4pLmax{1,L2}' 

(6.19) 

we can utilize (6.18) to state that 

(6.20) 

for some positive constants ~1 and ~2. Given the definition of (6.13) and 
the inequality given by (6.20), we can formulate the following bounds on 
V(t): 

Al (Eb(t) + 1J2(t)) :::; V(t) :::; A2 (Eb(t) + 1ht)) , (6.21) 

where Al and A2 are defined as follows: 

_ . { max{1,L2} 1 } 
Al - mID 1 - 4(3pL min {p, El} , 2m > 0 

(6.22) 

_ { max{1,L2} 1 } 
A2 - max 1 + 4(3pL min {p, EI} , 2m > 0, 

with (3 satisfying (6.19). 
Next, we illustrate that for sufficiently large ks and sufficiently small (3, 

the time derivative of V (t) will be a nonpositive function. If we differentiate 
(6.13) with respect to time, we have 

(6.23) 

where (6.9) has been utilized. To determine Eb(t) in (6.23), we differentiate 
(6.14) with respect to time to obtain 

where (6.1) has been utilized. If we integrate by, parts twice, the first term 
on the right-hand side of (6.24), we obtain 

(6.25) 

where the boundary conditions given in (6.2) have been applied. Finally, 
upon the application of (6.6), (6.25) can be rewritten as 

(6.26) 
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To determine Ec{t) in (6.23), we differentiate (6.15) with respect to time 
and then apply (6.1) to produce 

(6.27) 

where 

Al = 2(3p foL UUtuutdu 

After integrating, by parts, the expression for Al given in (6.28), we obtain 

Al = 2(3p (LU~(L) - foL U~dU) - 2(3p foL UUtuutdu, (6.29) 

where (6.2) has been used .. After noting that the last term on the right-hand 
side of (6.29) is equal to AI, we can rearrange (6.29) to yield 

(6.30) 

After integrating, by parts, the expression for A2 given in (6.28), we obtain 

A, ~ -2fJEI (LU.(L) ... .(L) - J.L """" •• M - J.L uu •• U ••• M) 

(6.31) 
upon application of (6.2). After integrating, by parts, the first integral on 
the right-hand side of (6.31), we obtain 

A2 = -2(3EI (LUx(L)Uxxx{L) + foL u;udu - foL UUuuuuuuM) (6.32) 

upon application of (6.2). After integrating, by parts, the last integral on 
the right-hand side of (6.32), we obtain 

A2 = -2(3EI (LUx(L)Uxxx{L) + 2 foL u;uM + foL UUUUuuuudU) , 

(6.33) 
where (6.2) has been again used. After adding the expressions given by 
(6.32) and (6.33), we obtain 

A2 = -(3EI (2LUx{L)Uxxx(L) + 3 foL u;uM) . (6.34) 
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We can now substitute (6.30) and (6.34) into (6.27), and then substitute 
the resulting expression along with (6.26) into (6.23) to produce 

v = - (~I _ {1LP) u~(L) - ~I u;xx(L) - (ks _ ~I) 712 - 2{1Eb 

-2{1EI IoL U~<Td(1 - 2{1EILux (L)Uxxx (L), 

(6.35) 
where (6.14) has been utilized. After applying (A.24) of Lemma A.12 in 
Appendix A and (A.30) of Lemma A.13 in Appendix A to the second line 
of (6.35), we can obtain the following upper bound for V(t): 

(6.36) 
where 0 is an arbitrary positive constant. We now rearrange (6.36) into the 
following advantageous form: 

V::; - (~I _ {1LP) u~{L) - (ks - ~I) 712 - 2{1Eb 

-2EIL{1 (;2 -0) u;(L) - EI (~- 2~{1) u;xx{L). 

(6.37) 

From (6.37) , it is not difficult to see that if the control gain ks and the 
constants 0, {1 are selected to satisfy the following conditions: 

EI 
kS >2' f.1 • {EI O} 

JJ < nun 2pL' 4L ' (6.38) 

then V{t) can be upper bounded by a nonpositive scalar function as shown 
below: 

(6.39) 

where .A3 is defined as follows:3 

.A3 = min { ks - ~I, 2{1 } > O. (6.40) 

3Note that '>'3 is positive as a result of the condition given in (6.38). 
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From (6.21) and (6.39), we can obtain the following upper bound for the 
time derivative of V(t): 

. ).3 
V(t) :5 - ).2 V(t). (6.41) 

Upon application of Lemma A.4 in Appendix A to (6.41), we have 

V(t):5 V(O)exp (- ~:t). (6.42) 

From (6.21), (A.28) of Lemma A.12 in Appendix A, and (6.14), we have 
that 

(6.43) 

and 

Vx E [O,LJ. 

(6.44) 
The result given by (6.10) and (6.12) now directly follows by combining 
(6.42), (6.43), and (6.44), and then using the definitions given by (6.6) and 
(6.14). 0 

Remark 6.1 Note that the proof of Theorem 6.1 relies on the weighting 
constant f3 being chosen sufficiently small such that both conditions (6.19) 
and (6.38) are satisfied. Thus, the overall condition on f3 can be written as 

. {min{P,EI} EI 6} 
f3 < nun 4pLmax {I, L2}' 2pL' 4L ' 

(6.45) 

where 6 must be selected to satisfy the second inequality given in (6.38). 

Remark 6.2 Prom (6.13) and (6.42), we can state that Eb(t) and 'f/(t) 
are boundedVt E [0,00). Since Eb(t) is boundedVt E [0,00), we can use 
(6.14) and (A.28) in Lemma A.12 in Appendix A to show that u (x, t) 
is bounded Vt E [0,00) and Vx E [O,LJ. Since Eb(t) defined in (6.14) is 
bounded Vt E [0,00), the potential eneryy given by (6.4) is bounded Vt E an 
[0,00); hence, we can use Property 6.1 to show that ~u(x, t) is bounded 

uxn 

for n = 2, 3, 4, Vt E [0,00), and Vx E [0, LJ. Since 'f/(t) and uxxx(L, t) 
are bounded Vt E [0,00), we can use (6.6) to state that ut(L, t) is bounded 
Vt E [0,00). From the boundedness of Eb(t) and ut(L,t), we can see that 
the kinetic eneryy of the system defined in (6.5) is bounded Vt E [0,00). 
Since the kinetic eneryy is bounded Vt E [0,00), we can use Property 6.2 an 
to conclude that ~Ut(x, t) is bounded for n = 0, 1, 2, 3, Vt E [0,00), 

uxn 

and Vx E [0, LJ. Prom the above information, we can now state that all of 
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the signals in the control law oj (6.8) are bounded Vt E [0,00). Finally, we 
can use (6.1), (6.3), and the above boundedness statements to show that 
Utt(x, t) is bounded Vt E [0,00) and Vx E [0, L]. 

6.2.4 Adaptive Control Law 

The control law given by (6.8) requires exact knowledge of the payload mass 
and the beam bending stiffness. We will now illustrate how the controller of 
(6.8) can be redesigned to compensate for constant, parametric uncertainty 
while asymptotically stabilizing the beam displacement. First, note that 
(6.7) can be rewritten into the following advantageous form: 

mi](t) = Y ((u"'''''''t (L, t) ,U",,,,,,, (L, t))) e + J(t), (6.46) 

where y(.) E ~lx2 is a known regression matrix, and e' E ~2 is an unknown, 
constant, parameter vector defined as follows: 

y(.) = [ -u",,,,,,,t(L, t) u",,,,,,,(L, t) ] 
T e = [m EI] . (6.47) 

Based on the form of (6.46), the control force is now designed as 

J(t) = -Y(.)B(t) - ks'T](t) , (6.48) 

where 'T](t) was defined in (6.6), and B(t) E ~2 is a dynamic, parameter 
estimate vector defined as follows: 

B(t) = [m(t) BI(t)] T . (6.49) 

Motivated by the subsequent Lyapunov-type stability analysis, the para­
meter estimate vector is updated according to 

(6.50) 

where r E ~2x2 is a diagonal, positive-definite, adaptation gain matrix. If 
we define B(t) = e - B(t) E ~2 as the parameter estimation error vector 
and then substitute (6.48) into (6.46), we obtain the closed-loop system 
dynamics as shown below: 

mi](t) = -ks'T](t) + Y(.)B(t) B (t) = -ryT(')'T](t), (6.51) 

where (6.50) was used to obtain the parameter estimation error dynamics. 
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Theorem 6.2 The adaptive boundary control law given by (6.48) and (6.50) 
ensures that the beam displacement is asymptotically regulated in the fol­
lowing sense: 

lim lu(x, t)1 = ° \Ix E [0, L], 
t-+oo 

(6.52) 

where the control gain ks defined in (6.48) must be selected to satisfy (6.11). 

Proof. The following proof is based on similar arguments as those used in 
the proof of Theorem 6.1; hence, some of the details will not be repeated. 
First, we define the following function: 

1-T 1-
Va(t) = Vet) + 2e (t)r- e(t), (6.53) 

where Vet) was given in (6.13). If the constant (3 of (6.15) is selected suf­
ficiently small according to the condition of (6.19), we can formulate the 
following bounds on Va(t): 

Ala (Eb(t) + 172(t) + Ile(t)11 2
) :S Va(t) :S A2a (Eb(t) + 172(t) + Ile(t)112

) 

(6.54) 
for some positive constants Ala and A2a. After differentiating (6.53) with 
respect to time and substituting (6.1), (6.2), and the first equation of (6.51), 
we can follow the derivations used in the proof of Theorem 6.1 to obtain 
the following upper bound for the time derivative of Va (t): 

where A3 was defined in (6.40). Substituting the second equation of (6.51) 
into (6.55) simplifies the upper bound on Va(t) to 

(6.56) 

where ga(t) is a non-negative function. We can now use (6.54), (6.56), and 
the arguments outlined in Remark 6.2 to state that all signals in the control 
law of (6.48) and (6.50) are bounded \It E [0, (0), and that all signals in the 
system given by (6.1) and (6.3) remain bounded \Ix E [0, L] and Vt E [0,(0). 

After differentiating ga(t) defined in (6.56) with respect to time, we have 

(6.57) 

Since we know that all system signals remain bounded \It E [0,(0), we can 
use (6.25) and (6.51) to show that Eb(t) and i](t) are bounded \It E [0, (0). 
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Hence, we can see from (6.57) that 9a(t) is bounded \:It E [0, (0). We can 
now apply Lemma A.6 in Appendix A to (6.56) to show that 

lim Eb(t), 'TJ(t) = O. 
t-HX) 

(6.58) 

Finally, the result given by (6.58) and the inequalities developed in (6.44) 
can be combined to state the result given by (6.52). 0 

6.2.5 Extensions 

We now illustrate how some extensions to the basic control laws given in 
the previous section can be developed. 

Integral Feedback 

Using the basic control structure given by (6.8), we can obtain a new control 
law with an additional integral feedback loop and an additional control gain 
in the definition of the tracking variable 'TJ(t) defined in (6.6). That is, we 
redefine the model-based control force originally given in (6.8) as follows: 4 

j(t) = Q;mu",,,,,,,t(L, t) - Elu",,,,,,,(L, t) - kp'TJ(t) - ki lot 'TJ( r)dr. (6.59) 

where Q;, kp, and ki are positive control gains, and the variable 'TJ(t) origi­
nally defined in (6.6) is now defined as follows: 

'TJ(t) = ut(L, t) - Q;u",,,,,,,(L, t). (6.60) 

After deriving the open-loop dynamics for 'TJ (t) in (6.60) in a similar fashion 
as was done in (6.7), we can substitute (6.59) to obtain the following closed­
loop dynamics for 'TJ(t): 

mi](t) = -kp'TJ(t) - ki lot 'TJ(r)dr. (6.61) 

To prove the exponential stability result of Theorem 6.1 for the new 
controller of (6.59), we modify the function given in (6.13) as follows: 

(6.62) 

4The form of this new control law was motivated, in part, by experimental imple­
mentations of the controllers. These experimental results indicated that improved system 
performance could be potentially achieved by modifying (6.8) to include the modifica­
tions described by (6.59) and (6.60). 
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where Eb(t) and Ec(t) were defined in (6.14) and (6.15), respectively, and 
z(t) E 1R2 is defined as 

z(t) = [ lot ry(r)dr ry(t) ] T (6.63) 

If the constant 13 defined in (6.15) is selected to be sufficiently small, and 
the control gain kp is selected to satisfy the following condition: 

kp >m, (6.64) 

we can follow similar steps as those used in the proof of Theorem 6.1 to 
formulate the following bounds on Ve(t) of (6.62): 

(6.65) 

for some positive constants Ale and A2e. After differentiating (6.62) with 
respect to time and substituting (6.1), (6.2), and (6.61), we can obtain the 
following upper bound5 for the time derivative of Ve(t) of (6.62): 

Ve(t) ~ - (~~ - f3LP) u~(L, t) + ~~ ry2(t) - zT(t)Qz(t) 

-f3Eb(t) - 2EILf3 (12 -8) u;(L, t) 

( a 2L(3) 2 -EI 2: - -8- uxxx(L, t), 

where Q E 1R2x2 is given by 

[ 
ki 0 1 

Q = 2m kp 1 . 
o --­

m 2 

(6.66) 

(6.67) 

Since ki > 0 and kp has to satisfy (6.64), it is easy to see that the matrix 
Q is positive-definite. Hence, we can use (6.66) to obtain the following new 

5To arrive at (6.66), we have used (6.60) to manipulate the expression for Eb (t) 
originally given in (6.26) into the following form Eb = - ~~ (ur(L, t) + a2u~xx(L, t)) + 
~~ 172 (t). 
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upper bound for Ve(t): 

( . {ki (kp I)} EI) ( 2 - mIll 2m' m -'2 - 20: liz t)11 

(6.68) 
From (6.68), it is clear that ki' kp, 8, and (3 can be selected such that Ve(t) 
is upper bounded by a nonpositive function (Le., for large enough ki and 
kp, for small enough 8, and even smaller (3); hence, 

(6.69) 

for some positive constant A3e. We can now use (6.65), (6.69), and the argu­
ments outlined in Remark 6.2 and in the proof of Theorem 6.1 to show that 
all system signals remain bounded, and state a similar exponential stabil­
ity result as that given by (6.10). Furthermore, by following the adaptive 
control derivations given in Section 6.2.4, we can redesign the control law 
given by (6.59) as an adaptive controller that compensates for parametric 
uncertainty and achieves asymptotic displacement regulation. Note that 
for this new adaptive controller, the regression matrix originally given in 
(6.47) will now be defined as follows: 

Y(.) = [ -o:uxxxt(L, t) uxxx(L, t) ] . (6.70) 

Compensation of Free End-Point Inertial Effects 

Since we have assumed that the payload at the free end of the beam is 
a point-mass, the dynamic model given by (6.1) through (6.3) neglects 
inertial effects at the end of the beam. If it is deemed that the free end-point 
inertial effects cannot be neglected, we can use the following additional 
dynamic boundary condition: 

JUxtt(L, t) + Eluxx(L, t) = r(t), (6.71) 

where J denotes the inertia of the payload at the end of the beam, and 
r(t) is a boundary control input torque applied to the end of the beam. To 
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maintain the exponential stability result of Theorem 6.1, we can design the 
input torque T(t) as follows: 

T(t) = -Juxxt(L, t) + Eluxx(L, t) - kr (uxt(L, t) + uxx(L, t)), (6.72) 

where kr is a positive control gain. 
By adding the term ~J (uxt(L,t) + uxx(L, t))2 to the function V(t) of 

(6.13), we can easily extend the proof of Theorem 6.1 to illustrate that 
the additional boundary control input of (6.72) can be used in conjunction 
with the input force of (6.8) to compensate for free end mass and iner­
tial effects. Note from (6.72) that the implementation of this new control 
strategy will require the additional measurements of the beam's end-point 
strain uxx(L, t), time derivative ofthe end-point strain uxxt(L, t), and time 
derivative of the end-point slope uxt(L, t). In a similar manner to Section 
6.2.4, an adaptive control torque strategy can also be designed and com­
bined with (6.48) to compensate for parametric uncertainty (including the 
unknown inertia) and produce the same asymptotic stability result of The­
orem 6.2. Note, however, that since the Timoshenko beam model accounts 
for the rotary inertia of the beam and the deflection owing to shear as dis­
cussed in Section 6.1, it seems more reasonable to use the more complex 
Timoshenko model for control design when the end-point inertia cannot be 
neglected, as illustrated later in Section 6.3. 

6.2.6 Experimental Evaluation 

Experimental Setup 

A schematic of the experimental setup used in the real-time implementation 
of the controllers is shown in Figure 6.2. A flexible beam 72 cm in length 
was attached to the top of a support structure. A small metal cylinder 
weighing 0.3 kg was attached to the free end-point of the flexible beam via 
a strain-gauge shear sensor to serve as the payload mass. The axis of the 
beam was made to coincide with the center of gravity of the mass. The 
displacement ofthe beam's end-point (i.e., u(L, t)) was sensed by a small 
laser displacement sensor mounted perpendicularly to the beam. Another 
laser displacement sensor was used to measure the displacement of the 
beam's mid-point (i.e., u(L/2, t)). The signal from second laser was only 
used to monitor the performance of the controller and was not used in the 
control strategy. 

At the end-point of the beam, a pair of electromagnets were arranged to 
apply the boundary control input force on the payload mass. A custom de­
signed software commutation strategy ensured that the desired input force 
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FIGURE 6.2. Schematic diagram of the Euler-Bernoulli beam experimental setup. 

commanded by the control law was applied to the mass. Roughly speaking, 
the commutation strategy involved translation of the desired force trajec­
tory into desired current trajectories. To ensure that the actual currents 
tracked the desired current trajectories, a high-gain current feedback loop 
was utilized to apply voltages to the two electromagnets. The two magne­
tizing currents were measured using hall-effect current sensors. The signal 
from the force sensor's bridge circuit was scaled and filtered before being 
read into an analog input port on a motion control board. The laser sig­
nal was sent to an analog input port on the motion control board after 
scaling. A Pentium 166 MHz PC running QNX hosted the control algo­
rithm. Qmotor provided the environment to write the control algorithm 
in the C programming language. All controllers were implemented using 
a sampling period of 0.5 msec. The velocity of the beam's end-point (i.e., 
ut(L, t)) and the time derivative of end-point shear (Le., uxxxt(L, t)) were 
obtained by use of a backwards difference algorithm applied to the signals 
u(L, t) and uxxx(L, t), respectively, with the resulting signals being filtered 
by a second-order digital filter. The parameters associated with the flexible 
Euler-Bernoulli beam model were calculated using standard test procedures 
and engineering handbook tables, and were found to be EI = 2.65 N_m2 

and p = 1.56 kg/m. 
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Experimental Results under Impulse Excitation 

To ensure a consistent excitation, an impulse hammer was released from 
a latched position and allowed to strike the beam only once and at the 
same point each time. First, the uncontrolled (Le., open-loop) response 
of the beam's end-point and mid-point displacements when struck by the 
impulse hammer were recorded and are shown in Figure 6.3. Note that the 
uncontrolled oscillations of the beam take a long time to damp out. 

Experiment 1: For comparison purposes, a standard active damper was 
implemented using the following control law: 

J(t) = -kpUt(L, t), (6.73) 

where kp is a positive control gain. The performance of the damper con­
trollaw in terms of the beam's end-point and mid-point displacements for 
three values of the control gain kp (i.e., kp = 1, 2.5, and 6) is shown in 
Figure 6.4. Note that increasing the control gain kp has a favorable effect 
on the damping of the low-frequency oscillations induced by the excitation; 
however, the high-frequency oscillations induced by the impulse excitation 
seem to increase as kp is increased. It was observed that for kp > 6.5, the 
high-frequency oscillations in the beam increased continuously even in the 
absence of the impulse excitation. One heuristic explanation for this be­
havior is that as kp is increased, the beam dynamics began to more closely 
resemble a clamped-clamped configuration instead of the clamped-free end 
configuration described by (6.1) and (6.2). 

Experiment 2: The model-based controller given by (6.59) and (6.60) was 
implemented with three sets of control gains: 

kp = 2.5, a = 1.1, ki = 0 

kp =5, a = 0.55, ki =0 

kp = 7.5, a = 0.38, ki =0. 

The performance of the controller in terms of the beam's end-point and 
mid-point displacements is shown in Figure 6.5. Note that the model-based 
controller damps out both the high-frequency and the low-frequency oscil­
lations quite satisfactorily provided kp is selected to be small. Several other 
experiments were run with ki set to different nonzero values; however, no 
significant improvement in the regulation performance was observed. 

Experiment 3: Finally, the adaptive version of the controller given by 
(6.59), (6.60), and (6.50) was implemented by assuming no a priori knowl­
edge of the system parameters m and EI. The best performance was 
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FIGURE 6.3. Uncontrolled response of the beam owing to impulse excitation. 

achieved with the gains kp = 5.0, a = 0.3, ki = 0, and r = diag{5,5}. 
The estimates of the unknown parameters were initialized to zero and com­
puted on-line using a standard trapezoidal rule of numerical integration. 
The controller performance in terms of the beam's end-point and mid­
point displacements is shown in Figure 6.6. The parameter estimates are 
also shown in Figure 6.6. 

As the above results indicate, the model-based and adaptive controllers 
regulate the beam displacement a little faster when compared to the active 
damper control of (6.73); however, the high-frequency oscillations have been 
significantly reduced. 

Experimental Results Caused by an End-Point Offset 

This set of experiments consisted of releasing the beam's end-point from an 
offset position via the use of a mechanical latch. The uncontrolled response 
of the beam's end-point when released from the end-point offset is shown in 
Figure 6.7. Again, note that the uncontrolled oscillations take a long time 
to damp out. 

Experiment 1: First, the active damper control algorithm given by (6.73) 
was implemented. The best regulating performance was achieved with kp = 
100. The beam's end-point displacement is shown in Figure 6.8. The control 
energy (Le., the integral of the square root of the sum of the squares of 
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FIGURE 6.10. End-point offset experiment - adaptive controller. 

the two actuator electrical currents) was computed on-line to serve as an 
additional performance index to compare the controllers, and is also shown 
in Figure 6.8. 

Experiment 2: The model-based controller given by (6.59) and (6.60) was 
implemented with the best performance being achieved, with the control 
gains kp = 100, a = 0.026, and ki = O. The performance of the controller 
in terms of the beam's end-point displacement and control energy is shown 
in Figure 6.9. 

Experiment 3: Finally, the adaptive controller version of the controller 
given by (6.59), (6.60), (6.70) and (6.50) was implemented by assuming no 
a priori knowledge of the unknown parameters. The best performance was 
achieved with the gains kp = 100, a = 0.02, ki = 0, and r = diag{l, I}, 
while the parameter estimates were initialized to zero. The beam's end­
point displacement and control energy are shown in Figure 6.10 along with 
the parameter estimates. 

To compare the controllers' performances, the following table is utilized 
to summarize the results of the above experiment: 

Controller I Mp cm I ts sec I E at 3 sec I 
Damper -1.74 2.50 5.75 

Model-Based -1.63 1.35 5.39 
Adaptive -1.44 1.90 5.71 
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FIGURE 6.11. Schematic representation of a cantilevered Timoshenko beam with 
end-point mass/inertia. 

where Mp denotes the maximum peak end-point displacement, ts denotes 
the settling time corresponding to the time when the beam's end-point 
displacement is less than or equal to ±O.8 [mm], and E denotes the con­
trol energy. While Mp and E for each controller are all relativel~ close in 
their numerical value, the model-based controller exhibited superior set­
tling time. Furthermore, it is interesting to note that ts of the adaptive 
controller is significantly better than that of damper controller, even though 
the adaptive controller requires no knowledge of the system parameters. 

6.3 Timoshenko Beam 

In this section, we consider the problem of stabilizing the distributed dis­
placement and cross-section rotation of a cantilevered Timoshenko beam 
with mass and inertial dynamics at the beam's free end-point. The control 
strategy, which is composed of boundary force and torque inputs applied 
to the beam's free end-point, requires measurements of the end-point dis­
placement, slope, rotation owing to bending, slope of the rotation owing to 
bending, and the time derivatives of these quantities. As in Section 6.2, a 
model-based controller is first developed which exponentially regulates the 
beam displacement and rotation. An adaptive controller is then designed 
to asymptotically regulate the beam displacement and rotation while com­
pensating for parametric uncertainty. 



www.manaraa.com

186 6. Cantilevered Beams 

6.3.1 System Model 

The Timoshenko model for the cantilevered beam system depicted in Figure 
6.11 is assumed to be described by the following PDEs [5, 19J: 

PWtt(x, t) + K ('Px(x, t) - wxx(x, t)) = ° 
Ip'Ptt(x, t) - EI'Pxx(x, t) + K ('P(x, t) - wx(x, t)) = 0, 

with the following boundary conditions:6 

w(O, t) = 'P(O, t) = 0, 

mWtt(L, t) - K ('P(L, t) - wx(L, t)) = f(t), 

and 

(6.74) 

(6.75) 

(6.76) 

(6.77) 

(6.78) 

where w(x, t) denotes the beam displacement at the position x for time t; 
'P(x, t) denotes the rotation of the beam's cross-section owing to bending 
at the position x for time t; f(t) denotes the boundary control input force; 
T(t) denotes the boundary control input torque; p is the mass/length of the 
beam; K = kGA; k is a positive constant that depends on the shape of the 
beam's cross-section; G is the modulus of elasticity in shear; A is the cross­
sectional area of the beam; Ip is the mass moment of inertia of the beam's 
cross-section; E I is the bending stiffness of the beam; L is the length of 
the beam; and m, J denote the mass and inertia of the payload/actuator, 
respectively, attached to the beam's end-point. 

Since the control strategies will consist of relatively simple functions, we 
will assume the existence of a unique solution for the dynamics given in 
(6.74) through (6.78) under the control. Furthermore, based on the argu­
ments outlined in Remark 5.1, we will assume that the distributed variables 
w(x, t), 'P(x, t) and their time derivatives Ut(x, t), 'Pt(x, t) belong to a space 
of functions that have the following properties. 

Property 6.3: If the potential energy of the system given by (6.74) through 
(6.78), defined as 

6 Given the clamped end boundary conditons of (6.76), we also know that Wt(O, t) = 0 

and 'f't(O, t) = O. 
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an an 
is bounded, then ~w(x, t) and ~rp(x, t) are bounded for n = 1, 

uxn uxn 

2, Vt E [0,00), and Vx E [0, L]. 

Property 6.4: If the kinetic energy ofthe system given by (6.74) through 
(6.78), defined as 

1 {L ( 2 2) 1 2 2() ITk = "2Jo PWt(cr,t)+Iprpt(cr,t) dcr+"2 mwt (L,t) + Jrpt L,t, 

(6.80) an an 
is bounded, then ~Wt(x, t) and ~rpt(x, t) are bounded for n = 0, 

uxn uxn 

1, Vt E [0,00), and Vx E [0, L]. 

6.3.2 Problem Statement 

The control objectives areto design the boundary control inputs f(t) and 
T(t) to drive both the beam displacement w(x, t) and cross-section rotation 
rp(x, t) to zero Vx E [0, L] as t --+ 00. As in Section 6.2.2, in order to facilitate 
the control design and the subsequent Lyapunov-type stability analysis, we 
start by defining the auxiliary signals, denoted by 'TIl (t) and 'TI2(t), as follows: 

'TIl (t) = Wt(L, t) +wx(L, t) - rp(L, t) 'TI2(t) = rpt(L, t) +rpx(L, t). (6.81) 

After differentiating 'TIl(t) and 'TI2(t) of (6.81) with respect of time, multi­
plying the resulting expressions by m and J, respectively, and then utilizing 
(6.77) and (6.78) to substitute for mWtt(L, t) and Jrptt(L, t), respectively, 
we obtain 

mil1(t) = mWxt(L, t) - mrpt(L, t) + Krp(L, t) - KWx(L, t) + f(t) 

Jr,2(t) = Jrpxt(L, t) - Elrpx(L, t) + T(t). 
(6.82) 

The above open-loop dynamics will dictate the design of the model-based 
and adaptive control laws. 

6.3.3 Model-Based Control Law 

Based on the form of the open-loop dynamics of (6.82), the boundary con­
trol force and torque inputs are designed as follows: 

f(t) = -mwxt(L, t) + mrpt(L, t) - Krp(L, t) + KWx(L, t) - ks'TIl(t) (6.83) 

and 



www.manaraa.com

1&8 O. Cantilevered Beams 

r(t) = -J<Pxt(L, t) + EI<Px(L, t) - kr'TJ2(t), (6.84) 

where ks and kr are positive control gains. After substituting (6.83) and 
(6.84) into (6.82), we obtain the following closed-loop dynamics for 'TJ1(t) 

and'TJ2(t): 
(6.85) 

Theorem 6.3 The model-based boundary control law given by (6.83) and 

(6.84) ensures that the beam displacement W (x, t) and cross-section rotation 
<p(x, t) are exponentially regulated in the following sense: 

Iw(x, t)1 , l<p(x, t)1 ~ \:Ix E [0, LJ, (6.86) 

provided the control gains ks and kr satisfy the following inequalities: 

K 
k>­s 2 

EI 
kr >2' (6.87) 

where AI, A2, and A3 are some positive bounding constants, and the positive 

constant "'0 is given by 

"'0 = 10£ [<p;(u,O) + w;(u, 0) + <p;(u, 0) + w;(u, 0) 

+<p2(u, 0)] du + (wt(L, 0) + wx(L, 0) - <peL, 0))2 

+ (<pt(L, 0) + <Px(L, 0))2. 

(6.88) 

Proof. The following proof utilizes the same basic steps adopted in the 
proof of Theorem 6.1. We begin by defining the following function: 

(6.89) 

where 

K r£ 2 
+2 Jo (<p(u, t) - wa(u, t)) du, 

(6.90) 



www.manaraa.com

6.3 Timoshenko Beam 189 

Ecl(t) = 2f3p 1L wt(a, t)w" (a, t) da, 
o L 

Ec2(t) = 2f31p 1 ar.pt(a, t)r.p" (a, t) da, 
o L (6.91) 

Ec3(t) = -J.Lf3p 1 Wt(a, t)w(a, t) da, 
o L 

Ec4(t) = J.Lf31p 1 r.pt(a, t)r.p(a, t) da, 

and f3, J.L are positive weighting constants. The term Eb(t) defined in (6.90) 
represents the beam's total energy, while the second and third terms in 
(6.89) are related to the kinetic energy of the end-point mass/inertia. The 
cross terms Eci(t), defined in (6.91), were originally proposed in [5] and are 
utilized to facilitate the stability analysis. 

Notice that (6.90) can be rewritten as 

Eb = ~ 1L (pw; + Ipr.p; + Kr.p2 + Kw; + Elr.p;) da - K 1L r.pw"da. 

(6.92) 
After applying (A.29) of Lemma A.13 in Appendix A to the last term on 
the right-hand side of (6.92), we can upper bound Eb(t) as follows: 

(6.93) 

where 

(6.94) 

After applying (A.24) of Lemma A.12 in Appendix A to the r.p; term of 
(6.92), we can lower bound Eb(t) as shown below: 

with A E jR2x2 being defined as follows: 

[ 
EI 

A = K + 2L2 
-K 

(6.95) 

-:J 
Since the matrix A is positive-definite, we can now see from (6.93) and 
(6.95) that 
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where Amin {.} denotes the minimum eigenvalue of a matrix. After utiliz­
ing (A.29) of Lemma A.13 in Appendix A, Ec1 (t) of (6.91) can be upper 
bounded as follows: 

(6.97) 

We can now use (6.94) and (6.97) to establish the following inequalities: 

(6.98) 

In a similar manner, we can use (A.24) of Lemma A.12 in Appendix A, 
(A.29) of Lemma A.13 in Appendix A, and (6.94) to bound Ec2(t), Ec3(t), 
and Ec4(t) of (6.91) as follows: 

-2f31pLEn ~ Ec2 ~ 2f31pLEn 

-J.Lf31pEn ~ Ec4 ~ J.Lf31pEn. 

Now, from (6.96), (6.98), and (6.99), if f3 is selected as 

~min{P,Ip, ~I'Amin{A}} 
f3 < 2pL + 2IpL + J.Llp + J.Lpmax(l, L2)' 

then 
4 

(lEn ~ Eb + LEci ~ (2 En, 
i=l 

where the positive constants (1 and (2 are defined as follows: 

(1 = ~ min {p,Ip, ~I, Amin{A} } - 2f3pL - 2f3IpL 

-J.Lf3Ip - J.Lf3pmax(l, L2) 

(6.100) 

(6.101) 

(2 = ~ max {p, Ip, EI, 2K} + 2f3pL + 2f3IpL + J.Lf3Ip + J.Lf3pmax(l, L2). 

(6.102) 
Given the structure of V(t) defined in (6.89) and the inequality of (6.101), 
it is not difficult to see that 

Al (En(t) + 1J~(t) + 1J~(t)) ~ V(t) ~ A2 (En(t) + 1J~(t) + 1J~(t)), (6.103) 

where the positive constants Al and A2 are defined below: 

(6.104) 
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After differentiating (6.89) with respect to time, we have 

(6.105) 

where (6.85) has been used. To determine Eb (t) in (6.105), we differentiate 
(6.90) with respect to time to obtain 

Eb = 1L (Kwt (wo-o- - 'Po-) + E1'Pt'Po-o-) da + K 1L 'Pt (wo- - 'P) da 

+ 1L (K ('P - wo-)('Pt - wo-d + E1'Po-'Po-t) da, 

(6.106) 
where (6.74) and (6.75) have been utilized. If we integrate, by parts, the 
first integral of (6.106), we obtain 

Eb = Kwt(wx - 'P)I~ + EI'Pt'Pxl~ 

-1L 
(Kwo-t (wo- - 'P) + E1'Po-t'Po-) da 

+ 1L [K ('P - wo-) ('Pt - Wo-t) + E1'Po-'Po-t + 'Pt (-K'P + Kwo-)] da, 

(6.107) 
which, after the cancellation of common terms and the application of (6.76), 
reduces to 

Eb = K (wx(L),- 'P(L)) wt(L) + E1'Px(L)'Pt(L). (6.108) 

By utilizing the definitions given in (6.81), we can rewrite (6.108) in the 
following advantageous form: 

. K 2 K 2 K 2 EI 2 EI 2 EI 2( ) 
Eb = 2"'Tll-2"Wt (L)-2" (wx(L) - 'P(L)) +""2'Tl2-""2'Pt(L)-""2'Px L . 

(6.109) 
To determine' Eel(t) in (6.105), we differentiate Eel (t) of (6.91) with 

respect to time and substitute (6.74) into the resulting equation to produce 

Eel = 2{3p 1L aWtwo-tda + 2f3K 1L xwo-wo-o-da - 2f3K 1L aWo-'Po-da. 

(6.110) 
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After integrating, by parts, the first two integrals of (6.110), we obtain 

(6.111) 
To determine EC2{t) in (6.105) , we differentiate Ec2 (t) of (6.91) with respect 
to time and substitute (6.75) into the resulting expression to yield 

(6.112) 

After integrating, by parts, the first three integrals of (6.112), we have 

Ec2 = f3lp (L<P~{L) - 1L <p~da) + f3EI (L<P;{L) - 1L <p~da) 
-13K (L<p2{L) - 1L <p2OO) + 2f3K 1L awcr<Pcr 00. 

(6.113) 
In a similar manner, the time derivatives of Ec3{t) and Ec4{t) defined in 
(6.91) can be determined to be 

Ec3 = -J-Lf3p 1L w;da+J-Lf3K 1L w<PcrOO-J-Lf3K ( w{L)wx{L) - 1L w~da) 
(6.114) 

and 

(6.115) 
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After combining (6.111), (6.113), (6.114), and (6.115), we have 

4 

LEci = (3pLw;(L) + (31pL<p;(L) + (3KLw;(L) + (3EIL<p;(L) 
i=l 

-(3KL<p2(L) + f.L(3K iaL d~ (<pw) dO" - f.L(3Kw(L)wx(L) 

+f.L(3EI<p(L)<Px(L)+(3K(l-f.L) [iaL 
<p2dO"] 

-(3EI (1 + f.L) iaL 
<p;dO" - (3Ip (1 - f.L) iaL 

<p;dO" 

-(3p (1 + f.L) iaL 
w;dO" - (3K (1 - f.L) iaL 

w;dO". 

(6.116) 
After applying (A.24) of Lemma A.12 in Appendix A to the bracketed 

term of (6.116), and then selecting f.L such that 

{ KL2 -EI} 
max: 0, KL2 + EI < f.L < 1, (6.117) 

we can upper bound (6.116) in the following manner: 

4 

L Eci:S (3pLw;(L) + (3IpL<p;(L) + (3EIL<p;(L) + f.L(3EI [<p(L)<Px(L)] 
i=l 

+(3KL (wx(L) - <p(L))2 + 2(3KL [<p(L) (wx(L) - <p(L))] 

-f.L(3K [w(L) (wx(L) - <p(L))] 

(6.118) 
where the positive constant 00 is defined as follows: 

00 = min {EI(l + f.L) - KL2(1- f.L), Ip(l- f.L), p(l + f.L), K(l - f.L)}. 
(6.119) 

After applying (A.24) and (A.25) of Lemma A.12 in Appendix A to the 
last term in (6.118), and then applying (A.30) of Lemma A.13 in Appendix 
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A to the three bracketed terms in (6.118), we obtain 

4 

LEd ~ (3pLw;(L) + (3lpLcp;(L) + (3EILcp;(L) 
i=l 

where 

+(3KL (w",(L) - cp(L))2 + f-L(3EI (CP;o~L) + 03cp2(L)) 

+2(3KL ( (w",(L) ~ cp(L))2 + 04CP2(L)) 

+f-L(3K ( (w",(L) ~ cp(L))2 + 05W2 (L)) _ (302w2(L) 

-(301 10L (cp~ + W~ + cp~ + W~ + cp2) dO' - (302cp2(L) , 

(6.120) 

f: 00. { I} 
Ul = 3 lllln 1, L2 ' (6.121) 

and 03,04,05 are some positive constants. After regrouping the terms in 
(6.120), we obtain 

4 8Eci ~ (3pLw;(L) + (3lpLcp;(L) + (3EI (~ + L) cp;(L) 

-(3 (02 - 2K L04 - f-LE103) cp2(L) - (3 (02 - f-LK05) w2(L) 

+(3K (~ + ~~ + L) (w",(L) - cp(L)l 

(6.122) 
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After substituting (6.109) and (6.122) into (6.105), we have 

( EI ( f1, )) 2 ( EI) 2 - "2" -(3EI 83 +L .. CPx(L) - kr -"2" 'T/2 

If 83 , 84 , 85 , (3, k s , and kr are selected according to 

K EI 1 1} 
2pL' 2IpL' 2(* + L)' 2(1; + ~: + L) 

K 
ks > 2" 

EI 
kr > "2"' 

then it is not difficult to see that V(t) can be upper bounded by 

V(t) ::; -.A3 (En(t) + 'T/~(t) + 'T/~(t)) , 

where the positive constant .A3 is defined as 

.A3 = min { ks - ~, kr - ~I, (381 } , 

(6.123) 

(6.124) 

(6.125) 

(6.126) 

(6.127) 

(6.128) 

and the definition of En(t) from (6.94) has been utilized. From (6.103) 
and (6.127), we can obtain the following new upper bound for the time 
derivative of V(t): 

. .A3 
V(t) ::; - .A2 V(t). (6.129) 
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After applying Lemma AA in Appendix A to (6.129), we obtain the fol­
lowing solution: 

(6.130) 

where (6.103) has been utilized to formulate the second inequality, and the 
positive constant "'0 is defined in (6.88) (note that (6.81) and (6.94) have 
been utilized during the construction of "'0)' In addition, we can use (A.25) 
of Lemma A.12 in Appendix A, (6.94), and (6.103) to derive the following 
inequalities: 

'ix E [O,L] (6.131) 

'ix E [0, L]. (6.132) 

The result given in (6.86) is a direct consequence of the combination of 
(6.130), (6.131), and (6.132). D 

Remark 6.3 Prom (6.103) and (6.130), we can state that En(t), 1]l(t), 
and 1]2(t) are bounded 'it E [0,(0). Since En(t) is bounded 'it E [0,(0), 
we can use (6.93) and (A.27) of Lemma A.12 in Appendix A to show 
that w(x,t) and 'P(x,t) are bounded Vt E [0,(0) and'ix E [O,L]. Since 
En (t) defined in (6.94) is bounded 'it E [0, (0), the potential energy given 
by (6.79) is bounded 'it E [0, (0); hence, we can use Property 6.3 to state 

an an 
that -a w(x, t) and -a 'P(X, t) are bounded for n = 1, 2, 'it E [0, (0), xn xn 
and'ix E [0, L]. Since 1]l(t), 1]2(t), wx(L, t), and 'Px(L, t) are bounded 'it E 

[0, (0), we can use (6.81) to state that wt(L, t) and 'Pt(L, t) are bounded 
'it E [0, (0); hence, it is now easy to show that the kinetic energy of the 
system defined in (6.80) is bounded 'it E [0,(0). Since the kinetic energy 

an 
is bounded 'it E [0, (0), we can use Property 6·4 to state that -a Wt(X, t) xn 

an 
and axn'Pt(x,t) are bounded for n = 0,1, Vt E [0,(0), and'ix E [O,L]. 

Prom the above information, we can now state that all of the signals in the 
control law of (6.83) and (6.84) are bounded 'it E [0, (0). As a consequence, 
we can utilize (6.74), (6.75), (6.77), and (6.78) to illustrate that Wtt(x, t) 
and 'Ptt(x, t) remain bounded 'it E [0,(0) and'ix E [0, L]. 

6.3.4 Adaptive Control Law 

We now illustrate how the control law given by (6.83) and (6.84) can be 
redesigned to compensate for parametric uncertainty while asymptotically 
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stabilizing the beam displacement and cross-section rotation. We begin by 
rewriting the open-loop dynamics of (6.82) as follows: 

mih (t) = Y1 {wxt (L, t) ,Wx (L, t) ,<pt{L, t), <peL, t)) 01 + J{t) 
(6.133) 

where Y1{'), 1'20 E R 1X2 are known regression matrices, and 01,02 E R2 

are unknown, constant parameter vectors defined as follows: 

Y10 = [ Wxt{L, t) - <pt{L, t) <peL, t) - wx{L, t) ] 

Y20 = [ <Pxt{L, t) -<Px{L, t) ] 

01 = [m K] 
T T 

O2 = [J EI] . 

(6.134) 

From the structure of (6.133), the boundary control force and torque inputs 
are defined as follows: 

where 1]1 (t), 1]2{t) were defined in (6.81), and B1{t), B2{t) E R2 are dynamic, 
parameter estimate vectors defined below: 

B2{t) = [J{t) EI{t)] T . (6.136) 

Based on the subsequent stability analysis, the update laws for the para­
meter estimates are designed as follows: 

(6.137) 

where rl, r2 E R2x2 are diagonal, positive-definite, adaptation gain matri­
ces. After defining 81 (t) = 01 -fit (t) E R2 and 82{t) = 02 - B2{t) E R2, and 
then substituting (6.135) into (6.133), we obtain the following closed-loop 
system dynamics: 

(6.139) 

where (6.137) was utilized to form (6.139). 
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Theorem 6.4 The adaptive boundary control law given by {6.135} and 
{6.137} ensures that the beam displacement and cross-section rotation are 
asymptotically regulated in the following sense: 

lim w(x, t), <p(x, t) = ° 
t-+oo 

"Ix E [0, LJ, (6.140) 

where the control gains ks and kr defined in {6.135} must be selected to 
satisfy {6.87}. 

Proof. We use the following function: 

(6.141) 

where V(t) was defined in (6.89). As a straightforward extension of the 
arguments used in the proof of Theorem 6.3, we can select {3 sufficiently 
small to formulate the following bounds on Va (t): 

Ala ( En(t) + 71i(t) + 71~(t) + it Ilei(t) 112) ~ Va(t) 

~ A2a ( En(t) + 71i(t) + 71~(t) + it Ilei(t) 112) 
(6.142) 

for some positive constants Ala and A2a. After differentiating (6.141) with 
respect to time, and substituting from (6.74), (6.75), (6.138), and (6.139), 
we can proceed as in the proof of Theorem 6.3 to obtain the following upper 
bound for the time derivative of Va(t): 

Va(t) ~ -A3 (En(t) + 71i(t) + 71~(t)) 
(6.143) 

~ -A4 (Eb(t) + 71i(t) + 71~(t)) ~ -ga(t), 

where A3 was defined in (6.128), A4 is some positive constant, and ga(t) is 
a non-negative function. Note that the inequality given by (6.96) was used 
to form the second inequality in (6.143). 

After utilizing (6.142), (6.143), and the arguments outlined in Remark 
6.3, we can illustrate that all system signals are bounded during closed-loop 
operation "It E [0,00) and "Ix E [O,L]. From (6.143), the time derivative of 
ga(t) is given by 

(6.144) 

Since we know all of the system signals remain bounded "It E [0,00), we can 
use (6.109) and (6.138) to show that Eb(t), ryl(t) , and ry2(t) are bounded; 
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hence, we can see from (6.144) that ga(t) is also bounded Vt E [0,00). We 
can now invoke Lemma A.6 in Appendix A to show that 

(6.145) 

Finally, we can use (6.145), (6.96), (6.94), (6.131), and (6.132) to obtain 
the result given by (6.140). 0 

6.3.5 Simulation Results 

To enable the simulation of the boundary control laws, Galerkin's method 
[10] was utilized to obtain a finite dimensional model for the beam dynamics 
of (6.74) and (6.75). To this end, the exact eigenvalues and eigenfunctions 
ofthe open-loop system were determined. The solutions to equations (6.74) 
and (6.75) have the form 

w(x, t) = W(x)eiAt cp(x, t) = q>(x)eiAt Vx E [O,L], (6.146) 

where>. denotes the open-loop eigenvalue and W(x), q>(x) are the open­
loop eigenfunctions. Substitution of (6.146) into (6.74) and (6.75) yields 
the following form for the eigenfunctions: 

Wi(X) = cosh(aix) - COS(/3iX) 

Dil ( . h( ) a:. (/3 ») -- SIn aiX - -, sm iX 
Di2 /3i 

(6.147) 

and 

(6.148) 

<I>i(X) = a; sin(aiX) + /3: sin(/3ix) 

- ~:~ (-a;cos(aix) +a:cos(/3iX») 

where Dil, Di2, ai, (3i> a:, and (3: are defined as follows: 

(6.149) 
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(6.150) 
2 J 2 I 

Di2 = .\ Jai cos(aiL) -.\ Jai COS(j3iL) 

+EI aia~ Sin(aiL) - Elj3ia~ Sin(j3iL) 

for Ai < If;, 
(6.151) 

and 

2 2 Ar(Ip+EI~)'fy'[Ar(Ip-EI~)r +4EI.\rp 
ai ,j3i = 2EI 

for Ai ~ If;. 
(6.152) 

To obtain the finite dimensional, closed-loop system dynamics, we approx­
imate the variables w(x, t) and cp(x, t) by the following finite expansions: 

N N 

w(x, t) = L Wi(X)qi(t) cp(x, t) = L <I>i(X)qi(t), (6.153) 
i=l i=l 

where N denotes the number of modes used in the approximation, and 
qi(t) is the i-th modal coordinate. Substitution of (6.153) into (6.74), (6.75), 
(6.77), and (6.78) with f(t) and r(t) given by (6.135) results in the following 
finite dimensional, nonlinear, closed-loop system dynamics: 

Mq(t) + B(t)q(t) + H(t)q(t) = 0, (6.154) 

where q(t) E IRN is the modal coordinate vector, and the elements of the 
matrices M, B(t), H(t) E IRNxN are defined as follows: 

Mij = 1L (pWi(O")Wj(O") + Ip<I>i(O")<I>j(O")) dO" 
(6.155) 

+mWi(L)Wj(L) + J<I>i(L)<I>j(L), 

Bij(t) = m(t)Wix(L)Wj(L) + ksWi(L)Wj(L) + J(t)<I>ix(L)<I>j(L) 

(6.156) 
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and 

Hij(t) = IoL (-KWiO"O" (a)Wj (a) - K~iO"(a)Wj(a) - EI~iO"O"(a)~j(a) 

+KWiO"(a)~j(a) + K~i(a)~j(a)) da 

+(K - K(t) + ks)Wix(L)Wj(L) 

+(EI - m(t) + kr)~ix(L)~j(L) 

(6.157) 
The nonlinear nature of (6.154) comes from the dependency of B(t) and 
H(t) on the parameter estimates met), J(t), K (t), and met). Note that 
for the model-based control simulations, met) = m, K(t) = K, J(t) = J, 
and met) = EI in (6.155) to (6.157). 

The system parameters used in the simulations are given below: 

m = 0.1 kg, J = 0.1 kg-m2 , L = 1.0 m, p = 1.0 kg/m, 

K = 1.5 N, Ip = 2 kg-m, and EI = 7.5 N-m2 • 

For N = 4, the following simulation results illustrate the response of the 
closed-loop system to a simulated impulse at the beam's free end-point. 
For comparison purposes, the open-loop system with J(t) = ret) = 0 (i.e., 
ks = kr = met) = J(t) = K(t) = m(t) = 0 in (6.156) and (6.157)) was also 
simulated. The control gains used for the model-based controller were cho­
sen as ks = 1.0 and kr = 4.0. The gains for the adaptive controller were ks = 

0.75, kr = 3.75, r 1 =diag{4,20}, and r2 =diag{lO,lO}, while the initial 
values of the parameter estimates were set to m(O) = J(O) = m(O) = 0 and 
K(O) = 2.0. Figure 6.12 shows the beam's end-point displacement w(L, t), 
end-point cross-section rotation cp(L, t), mid-point displacement w(L/2, t), 
and mid-point cross-section rotation cp(L/2, t) for the model-based con­
troller in comparison to the open-loop response. Figure 6.13 depicts the 
boundary control force and torque inputs for the model-based controller. 
Figures 6.14 and 6.15 show the same plots for the adaptive controller, while 
Figure 6.16 presents the parameter estimates met), K(t), J(t), and met). 
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FIGURE 6.12. Simulation results for open-loop system and model-based con­
troller. 
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FIGURE 6.16. Parameter estimates for adaptive controller. 

6.4 Notes 

As stated in the Introduction, owing to its simplicity, the Euler-Bernoulli 
model has been largely utilized in the design of boundary controllers for 
beam-type systems. For example, boundary controllers for cantilevered 
beams were proposed in MorgUl [11, 12], Chen et al. [4], Canbolat et al. 
[3], and Rahn and Mote [16], while boundary controllers for single flexible 
link robots were developed in Luo et al. [6]-[9] and MorgUl [14]. Boundary 
controllers for rotating beam models were designed in Baillieul and Levi 
[2], MorgUl [13], Sallet et al. [17], and Xu and Baillieul [20]. On the other 
hand, there seems to be very little work regarding the design of bound­
ary controllers for the Timoshenko model. Early work was provided by 
Kim and Renardy [5], where the stability of a cantilevered Timoshenko 
beam without end-point mass/inertia was investigated under the influence 
of standard linear, force and torque control dampers. A Lyapunov-type 
stability analysis coupled with semigroup theory was utilized to show that 
the energy of the system exponentially decays after a finite initial time 
which depends on the control gains and the system parameters. Shi et al. 
[18] proposed nonlinear and linear boundary controllers for a cantilevered 
Timoshenko beam with end-point mass/inertia, and proved the asymp­
totic and exponential decay, respectively, of the energy of the system by 
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using semi group theory and LaSalle's invariance principle. Recently in [21], 
Zhang et al. proposed exponentially stabilizing boundary controllers for a 
cantilevered Timoshenko beam with end-point mass/inertia. In contrast to 
the control laws of [18, 21], the control design and analysis presented in 
Section 6.3 (i) contains feedforward model-based terms and (ii) illustrates 
how the controller can be augmented with adaptive, parameter estimates 
to compensate for parametric uncertainty. 
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7 
Boundary Control Applications 

7.1 Introduction 

In this chapter, we present boundary control strategies for reducing vibra­
tion in three different engineering applications of flexible mechanical sys­
tems. Two of these applications will share the interesting characteristic of 
having flexible and rigid subsystems, which leads to hybrid dynamic models 
containing coupled PDEs and ODEs. The design of boundary controllers 
and the closed-loop stability analysis will be built upon the arguments set 
forth in Chapters 5 and 6. 

The first application will deal with the use of active vibration control for 
eliminating vibration-induced web breaks. This application is motivated by 
the fact that high-speed manufacture and transport of thin webs require 
tight control of the large vibration that can result from material nonunifor­
mity, support roller motion/ eccentricity, or aerodynamic excitation. Since 
failure of the web owing to excessive vibration wastes material and time and 
thereby limits the process productivity, the use of vibration control strate­
gies is well motivated. In a typical material transport system, large rollers 
are often utilized at the entry and exit points to move the web-like ma­
terial along the axial direction. To improve the vibration damping, much 
of the previous theoretical control work relies on the use of a transverse 
boundary control force applied at the entry or exit roller. Unfortunately, 
the size and weight of the entry/exit rollers and their inherent dynamic 
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coupling with the adjacent web limits the applicability of boundary control 
for axially moving webs. The impracticality of boundary control seems to 
be the primary motivation for the current use of a passive, interstitial (i.e., 
located in between the entry and exit rollers) dancer arm to control the web 
vibration. To promote active vibration regulation of axial moving web-like 
materials, we present the design of a Lyapunov-based control strategy that 
automatically regulates the web vibration by controlling the position and 
orientation of a mechanical guide attached to an active interstitial actuator. 

Because of the prohibitive cost of placing equipment in outer space, the 
use of standard, rigid link robot manipulators is impractical. As such, space­
based robot manipulators are more likely to be characterized by long links 
manufactured from lightweight metals or composites. Unfortunately, the 
use of long, lightweight links greatly complicates the corresponding posi­
tion control problem since the links are subject to deflection and/or vi­
bration. The second application examines the vibration control of a robot 
manipulator-like device. Specifically, we design control algorithms for a 
nonlinear distributed parameter model of a flexible single-link robot with 
a payload mass at the link's free end-point. That is, the controller is based 
on a hybrid system model that takes into account the nonlinearities and 
coupling effects between the link dynamics, the actuator hub dynamics, 
and the payload mass dynamics. 

In many engineering applications, a long rotor is utilized to transmit 
torque from a source to a load. As a result of shaft flexure, long rotors 
often exhibit dynamic misalignment or an unbalanced response. In the third 
application, we examine the vibration control of a flexible rotor by designing 
boundary controllers for a hybrid PDE-ODE model of a rotor that is free 
to vibrate in two dimensions. The rotor displacement is regulated via two 
boundary control forces applied to the free end-point of the rotor while 
angular velocity tracking is achieved via a boundary control torque applied 
to a rigid hub clamped to the other end of the rotor. 

7.2 Axially Moving String System 

In this section, we develop a vibration control system that uses two ac­
tuators to regulate the displacement in an axial moving string system. 
Specifically, we develop an active control strategy that automatically reg­
ulates the string displacement by controlling the position and orientation 
of a mechanical guide (see Figure 7.1). Given the dynamic model of the 
mechanical system, composed of a distributed parameter field equation 
coupled to a discrete actuator equation, a Lyapunov-type analysis is used 
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FIGURE 7.1. Schematic diagram of the axially moving string and actuator sys­

tem. 

to design a model-based control law that exponentially stabilizes the string 
displacement. We then illustrate how the model-based controller can be 
redesigned as an adaptive control law that asymptotically stabilizes the 
string displacement while compensating for parametric uncertainty. 

7.2.1 System Model 

For the system shown in Figure 7.1, let x and t denote the independent spa­
tial and time variables, respectively; u(x, t) denote the string displacement 
at the position x for time t; p be the mass/length of the web; P represent 
the constant bias tension in the web; m denote the actuator mass; J de­
note the actuator inertia; L be the length of the string; L1, L2 demark the 
boundaries of the actuator; v denote the constant, positive axial velocity; 
and J(t), ret) denote the control force and torque inputs applied by the 
interstitial actuator, respectively. To prevent buckling instabilities in the 

web, and to ensure that Po = P - pv2 > 0, we will assume that v < ~. 
The derivation of the dynamic model of the axial moving string system 

uses the following assumptions: (i) the string is perfectly flexible, (ii) the 
string is pinned at x = 0 and x = L, (iii) the string and actuator are 
subject to small displacements only, i.e., 

(7.1) 
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where ¢(t) is defined in Figure 7.1, (iv) the rotaxy inertia of the string is 
negligible, and (v) the hollow, rigid actuator has uniform mass distribution 
with its center of mass located at point (L'1L1 ,yet)) where yet) is given 
by 

( ) _ U(L2' t) + U(Ll' t) 
Y t - 2 . (7.2) 

Based on the above assumptions, the total kinetic energy of the system is 
given by 

1 (Ll 2 
Ilk = "2 P Jo [Ut(O", t) + vUq(O", t)] dO" 

+~P L: (Ut(O", t) + vUq(O", t))2 dO" + ~my2(t) 

1·2 1 2 1 3 ·2 
+"2J¢ (t) +"2P (L2 - Ll) (y(t) + v¢(t)) + 24 P (L2 - L1 ) ¢ (t), 

(7.3) 
where the subscripts x, t denote the paxtial derivatives with respect to 
x, t, respectively. The first two terms of (7.3) denote the kinetic energy of 
the axial moving string, the third and fourth terms represent the kinetic 
energy of the actuator, and the last two terms denote the kinetic energy of 
the string moving through the actuator. The total potential energy of the 
system is given by 

and the total work done by the external forces is given by 

Ilw = f(t)y(t) + r(t)¢(t). (7.5) 

Substitution of (7.3), (7.4), and (7.5) into Hamilton's principle [15], given 
by 

lot (6Ilk - 6Ilp + 6Ilw ) dt = 0, 

yields the following field equation: 

(7.6) 

PUtt (x, t) + 2pvuxt(x, t) - Pouxx(x, t) = ° x E [0, Ll] U [L2, L]. (7.7) 

The boundaxy conditions axe given byl 

lThe pinned boundary conditions of (7.8) imply that Ut(O, t) = 0 and Ut(L, t) = O. 
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u(O, t) = u(L, t) = 0, (7.8) 

while the actuator dynamics are described by the following ODE: 

[ 

-1 

M Ztt(t) + N(t) = L21 Ll 

L2 - Ll 

(7.9) 

where z(t) E ffi.2Xl, M E ffi.2X2, Po E ffi., and N(t) E ffi.2Xl are defined as 
follows: 

M= 

and 

N(t) = pv [ =~ 

Z(t) = [ u(Ll, t) ] , 
u(L2 , t) 

-1] [U(Ll,t) ]. 
1 U(L2, t) 

(7.10) 

(7.11) 

(7.13) 

Since the control strategies will be composed of relatively simple functions., 
we will assume the existence of a unique solution for the dynamics given by 
(7.7) through (7.9) under the control. In addition, based on the arguments 
outlined in Remark 5.1, we will assume that the distributed variable u (x, t) 
and its time derivative Ut (x, t) belong to a space of functions that possess 
the following properties. 

Property 7.1: If the potential energy of the system given in (7.4) is an 
bounded \It E [0,00), then ~u(x,t) is bounded for n = 1,2, \It E 

uxn 

[0,00), and \Ix E [O,LIJ U [L2,LJ. 

Property 7.2: If the kinetic energy ofthe system given in (7.3) is bounded an 
\It E [0,00), then ~Ut(x,t) is bounded for n = 0,1, Vt E [0,00), 

uxn 

and \Ix E [0, LIJ U [L2, LJ. 
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7.2.2 Problem Statement 

The control objective is to drive the string displacement u(x, t) to zero as 
t --- 00 for x E [0, L1] U [L2, L]. To facilitate the subsequent control design 
and analysis, we first define an auxiliary variable, denoted by TJ( t) E 1R2, as 
follows: 

TJ(t) = [ .. ut(Ll, t) + ux(L1 , t) ] . 
ut(L2, t) - ux (L2, t) 

(7.14) 

After differentiating TJ(t) of (7.14) with respect to time, multiplying the 
resulting expressions by M defined in (7.11), and then substituting from 
(7.9), we obtain 

"2 T(t) 
1 1 ~ [/(t) 1 ' 

(7.15) 
where (7.11) has been used and iJ(t) = -it (TJ(t)). The above equation de­
notes the open-loop dynamics of the auxiliary signal TJ (t) and will form the 
basis for the design of the model-based and adaptive control laws. 

7.2.3 Model-Based Control Law 
Given perfect knowledge of the system parameters, the form of (7.15), and 
the subsequent stability analysis, the control input vector is defined as 
follows: 

~ ]-1 (-M [ Uxt(Ll, t) ] + N(t) _ KSTJ(t)) , ! -Uxt(L2, t) 
2 

(7.16) 
where Ks E ~2x2 is a diagonal, positive-definite, control gain matrix. After 
substituting (7:16) into (7.15), we obtain the following closed-loop dynam­
ics for TJ(t):" 

MiJ(t) = -KsTJ(t). (7.17) 

Note that the control algorithm given in (7.16) only requires measure­
ments of the string slope (and its time derivative) on both sides of the 
mechanical guide and the position and orientation (and their time deriv­
atives) of the mechanical guide. Practically speaking, the tinie derivative 
quantities can be calculated on-line from the corresponding position or 
slope related quantities via a backwards difference-type algorithm; hence, 
implementation of the control algorithm could be performed with stan­
dard sepsor hardware. That is, incremental encoders can be used to obtain 
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position-related information while load cells mounted to the ends of the 
mechanical guide can be used to measure the string slope at the entry/exit 
points on the guide. 

Theorem 7.1 The model-based controller given by (1.16) ensures that the 
web displacement is exponentially regulated in the following sense: 

lu(x, t)1 :S (7.18) 

lu(x,t)1 :S 

where ).,1, ).,2, and ).,3 are some positive bounding constants, and the positive 
constant "'0 is given by 

(7.19) 
with 7](t) defined in (1.14). To ensure that (1.18) is achieved, the axial 
velocity v and the control gain matrix Ks must be selected to satisfy the 
following sufficient conditions: 

(7.20) 

where ).,min {.} denotes the minimum eigenvalue of a matrix. 

Proof. To prove the result given by (7.18), we define the following function: 

1 
V(t) = Es(t) + E c1 (t) + Ec2(t) + 27]T(t)M7](t), (7.21) 

where 

(7.22) 

(7.23) 
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and (3 is a positive weighting constant. To ensure that V (t) defined in 
(7.21) is non-negative, first note that the inequality (A.29) of Lemma A.13 
in Appendix A can be used to bound Ee1 (t) of (7.23) as follows: 2 

Eel :S 2{3pL1 loLl (u; + (1 + v) u;) de, 

< 4{3pL1 (1 +v) [~IoLl ( 2 P. 2) d 1 - . ( p.) 2 PUt + OUa a. nun p, 0 0 

(7.25) 

We can now use (7.22) and (7.25) to establish the following inequality: 

4{3pL1 (1 + v) Es < Eel < 4{3pL1 (1 + v) Es. (7.26) 
min(p, Po) - - min(p, Po) 

In a similar manner, we can use (A.29) of Lemma A.13 in Appendix A and 
(7.22) to bound Ee2(t) of (7.24) as follows: 

_ 4{3p (L.- L2) (1 + v) Es < Ee2 < 4{3p (L - L2) (1 + v) Es. (7.27) 
nun(p, Po) - - min(p, Po) 

From (7.26) and (7.27), we can see that if the weighting constant {3 is 
selected according to 

(7.28) 

we have 

(7.29) 

where (1 and (2 are some positive constants. Given the structure of V(t) 
defined in (7.21), the inequality given by (7.29), and the fact the matrix M 
defined in (7.11) is positive-definite, we can formulate the following bounds 
on V(t): 

Al (Es(t) + Ilry(t)11 2 ) :S V(t) :S A2 (Es(t) + Ilry(t)112 ) , (7.30) 

2To reduce the notational complexity in most of the following derivations, the ar­

guments x, t will be left out of all spatial/time-dependent variables, (e.g., u(x, t) will 
be denoted simply as u) while the argument t will be left out of the time-dependent 

variables (e.g., ux(L, t) will be denoted as ux(L)). 
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where A1 and A2 are positive constants defined as follows: 

A = . {1- 4,Bp(1+v) (L L-L) Amin{M}} 
1 mm '(P.) 1+ 2, 2 Ill1n p, a 

(7.31) 

A = {1 4,Bp(1+v) (L L-L) Amax{M}} 
2 max: + '(P.) 1+ 2, 2 ' mm p, a 

with Amax {.} denoting the maximum eigenvalue of a matrix. 
After differentiating (7.21) with respect to time, we have 

v (t) = Es (t) + Eel (t) + Ee2 (t) - r? (t) Ks'T/ (t) , (7.32) 

where (7.17) has been used. To determine Es(t) in (7.32), we differentiate 
(7.22) with respect to time to obtain 

E" ~ [t PO"'" •• ,",] + t pou.u.,,", + [J~ Po","",",] 

+ [: Pouquqtda - [pv 1L1 d~ U;da]- [pv [: d~ U;da] , 

(7.33) 
where (7.7) has been used. After integrating, by parts, the bracketed terms 
on the first line of (7.33) and then integrating the bracketed terms on the 
second line of (7.33), we obtain 

. 2 2) Es = Po (Ut(L1 , t)ux (L1 , t) - Ut(L2, t)ux (L2, t))-pv (Ut (L1, t) - Ut (L2, t) , 
(7.34) 

where the boundary conditions given in (7.8) have been used. After utilizing 
(7.14), we can rewrite (7.34) in the following advantageous form: 

Es = - ~O(U~(L1,t) +u;(L1,t)) - ~O(U~(L2,t) +u;(L2,t)) 

-pv (u~(L1, t) - U~(L2' t)) + ~o 'T/T'T/. 

(7.35) 

To determine Ec1(t) in (7.32), we differentiate (7.23) with respect to time 
to obtain 

(7.36) 
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after using (7.7). After noting that 

(7.37) 

for some constant b, we can rewrite (7.36) as follows: 

Eel = pf3 (LlUt(Ll, t) - 1L1 utda) + f3Fo (LlU;(Ll' t) - 1L1 U;da) . 

(7.38) 
To determine Ee2(t) in (7.32), we differentiate (7.24) with respect to time 

to obtain 

Ee2 = 2pf3 {L (a - L) Utu".tda + 2f3Fo {L (a - L) u".u".".da (7.39) 
JL 2 JL2 

after using (7.7). After noting that 

21b (a - b) uu".da = (b - a) u2(a) - lb u2da (7.40) 

for some constant b, we can rewrite (7.39) as 

Ee2 = pf3 ((L - L2) ut(L2, t) -1: utda) 

(7.41) 

+f3Fo ((L - L2) U;(L2' t) -1: u;da) 

After substituting (7.35), (7.38), and (7.41) into (7.32), we obtain 

-ut(Ll, t) (~o + pv - Pf3Ll ) - U;(Ll' t) (~o + pv - f3PoLl ) 

-u;(L2, t) (~o -pv - pf3 (L - L2)) 

-U;(L2' t) (~o - f3Po (L - L2)) . 

(7.42) 
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If the axial web velocity is selected according to3 v < ~, and the weighting 
constant f3 is selected to satisfy 

(7.43) 

then we can use (7.42) to form the following upper bound4 for V(t): 

(7.44) 
From (7.44) and (7.22), it is clear that if the control gain matrix Ks is se­
lected according to (7.20), then V(t) can be upper bounded by the following 
nonpositive function: 

(7.45) 

where A3 is some positive constant.5 From (7.30) and (7.45), we get 

V(t) ~ - ~: V(t), (7.46) 

whose solution, obtained by applying Lemma A.4 in Appendix A, is given 
by 

(7.47) 

where (7.30) has been used to formulate the inequality on the right-hand 
side of (7.47) and the positive constant /'\,0 is defined in (7.19) (note that 
(7.14), (7.21), and (7.22) have been used during the construction of /'\,0)' 
We can now use (A.25) of Lemma A.12 in Appendix A, (7.22), and (7.30) 

3The condition given on v given in (7.20) is obtained by substituting the definition 

for Po from (7.12) into v < ~, and then solving for v. 
4 It is easy to see that the weighting constant (3 can be selected small enough to satisfy 

both (7.28) and (7.43). 
5To ensure that >'3 is positive, the weighting constant (3, the axial web speed v, and 

the control gain matrix Ks must be selected to satisfy (7.43) and (7.20). 
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to formulate the following inequalities: 

p p (Ll 1 211 u2(x, t)::; 20 Jo u~(a, t)da::; Es(t) ::; Al Vet) 

2 (L~ L2) u2(x, t) ::; ~o l: u~(a, t)da ::; Es(t) ::; ~1 Vet) Vx E [L2' L]. 

(7.48) 
The inequalities given in (7.18) now follow directly by combining (7.47) 
and (7.48). 0 

Remark 7.1 From (7.21) and (7.47), we know that Es(t) and ry(t) are 
boundedVt E [0,(0). Since Es (t) is bounded, we can use (7.22) and (A.25) 
of Lemma A.12 in Appendix A to show that u (x, t) is bounded Vt E [0, (0) 
and Vx E [0,L1] u [L2,L]. Since Es (t) defined in (7.22) is bounded Vt E 

[0, (0), the potential energy of the system defined in (7.4) is bounded Vt E 
f)n 

[0, (0); hence, we can apply Property 7.1 to show that -f) u (x, t) is bounded xn 
forn = 1, 2, Vt E [0,(0), andVx E [0,L1] U [L2,L]. Since ry(t), u x (L1 ,t), 
and u x (L2,t) are bounded Vt E [0,(0), we can use (7.14) to state that 
Ut(Ll,t) and Ut(L2,t) are bounded Vt E [0,(0). From the boundedness of 
Es (t), Ut{Ll' t), and Ut{L2' t), we can see that the kinetic energy of the 
system defined in (7.3) is bounded Vt E [0,(0). Since the kinetic energy is 
bounded Vi E [0, (0), we can use Property 7.2 discussed to conclude that 
f)n 
-f) Ut(x, t) is bounded for n = 0, 1, Vt E [0, (0), and Vx E [0, LIJ U [L2' L]. xn 
From the above information, we can now state that all of the signals in the 
control law of (7.16) and in the system given by (7.7) through (7.9) remain 
bounded during closed-loop operation Vt E [0,(0). 

7.2.4 Adaptive Control Law 

The control law given by (7.16) requires exact knowledge of the system 
parameters. We will now redesign the control law given by (7.16) to com­
pensate for parametric uncertainty while asymptotically stabilizing the web 
displacement. First, note that the open-loop dynamics of (7.15) can be 
rewritten in the following advantageous form: 

(7.49) 

where the known regression matrix yet) E }R2X4 and the unknown, constant 
parameter vector B E }R4 are defined as follows: 
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Uxt(L1, t) - Uxt(L2, t) Uxt(L1, t) + uxt(Lz, t) 

4 (L2 - L1l2 

Uxt(L1, t) - u xt(L2, t) 
4 

Uxt (L1' t) + Uxt (L2' t) 
(L2 - L1)2 

T e = [meq Jeq PV PO] . 

(7.50) 

(7.51) 

Based on the structure of (7.49) and the subsequent stability analysis, the 
control law is designed as 

1 ]-1 
~ ( - Y(t)8(t) - Ks1](t)) , (7.52) 

where 8(t) E jR4 represents a dynamic, parameter estimate vector updated 
by 

8 (t) = ryT (t)1](t) , (7.53) 

with r E jR4X4 being a diagonal, positive-definite, adaptation gain matrix. 
After substituting (7.52) into (7.49), we can form the closed-loop dynamics 
for 1]( t) as follows: 

Mr,(t) = -Ks1](t) + Y(t)O(t), (7.54) 

where the parameter estimation error O(t) E jR4 is defined as follows: 

O(t) = e - 8(t). (7.55) 

Theorem 7.2 The adaptive controller given by (7.52) and the parameter 
update law of (7.53) ensure that the web displacement is asymptotically 
regulated in the following sense: 

lim u(x, t) = 0 
t ..... DO 

(7.56) 

where the axial web velocity and the control gain matrix Ks defined in (7.52) 
must be selected to satisfy the sufficient conditions stated in (7.20). 
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Proof. The proof is based on arguments similar to those used in the proof 
of Theorem 7.1; hence, some of the details will not be repeated. We start 
by defining the following function: 

1-T 1-
Va(t) = V(t) + 2e (t)r- e(t), (7.57) 

where V(t) was defined in (7.21). If f3 of (7.23) and (7.24) is selected ac­
cording to (7.28), we can formulate the following bounds on Va (t): 

Ala (Es(t) + 111J(t)112 + Iilht) 112) ::; Va(t) 

(7.58) 

::; A2a ( Es(t) + 111J(t)112 + Ile(t)112) , 

where Ala and A2a are some positive constants. 
After differentiating (7.57) with respect to time, and then substituting 

from (7:7) and (7.54), we can follow the derivations used in Theorem 7.1 
to obtain the following upper bound for the time derivative of Va (t): 

Va(t) ::; -A3a (Es(t) + 111J(t)ln + eT (t) (yT(t)1J(t) - r-1 ~ (t)) , (7.59) 

where A3a is some positive constant,6 and we have used the fact that e 
(t) = - e (t) from (7.55). We now substitute the parameter update law of 
(7.53) into (7.59) to obtain the following result: 

Va(t) ::; -A3a Es(t) + 111J(t)1I = -ga(t), . ( 2) A (7.60) 

where ga(t) is a non-negative function. After differentiating ga(t) with re­
spect to time, we obtain 

(7.61) 

By utilizing (7.57), (7.58), (7.60), and arguments similar to those outlined 
in the proof of Theorem 7.1 and Remark 7.1, we can illustrate that all 
closed-loop signals are bounded Vt E [0, (0). Hence, we can use (7.35) and 
(7.54) to conclude from (7.61) that iJa(t) is also bounded "It E [0, (0). We 
can now use Lemma A.6 in Appendix A to illustrate that 

lim Es(t), 111J(t)II = O. 
t ..... oo 

(7.62) 

Finally, we use (7.62) and (7.48) to obtain the result given by (7.56). 0 

6To ensure that A3a is positive, the weighting constant {3, the axial web speed v, and 
the control gain matrix Ks must be selected to satisfy (7.43) and (7.20). 
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'-, ' x-aXLS 

RolieB ~ 

Laser 1 wet 2 

FIGURE 7.2. Schematic diagram of the experimental setup for the axially moving 
string and actuator system. 

7.2.5 Experimental Evaluation 

Experimental Setup 

A schematic diagram of the experimental setup used to implement the con­
trollers is shown in Figure 7.2. The experimental setup consists of an axially 
moving string driven by a brushed DC motor via a belt-pulley transmis­
sion. This string is made up of a flexible tape with negligible thickness and 
width of 5 mm to facilitate laser measurements. Two dancer arms mounted 
on brushed DC motors applied the forces !l (t) and h (t). Encoders (1024 
pulses per revolution in quadrature) mounted on the DC motors actuating 
the two dancer arms measured the boundary displacements u (L1' t) and 
u (L2' t), while two lasers (operating at a 1 kHz bandwidth), placed on 
either side and at a very short distance from the point of contact of the 
dancer arm with the string, were used to measure the slopes U X (L1' t) and 
U X (L2' t). 

A Pentium 166 MHz PC running QNX hosted the control algorithm. 
QMotor provided the environment to write the control algorithm in the C 
programming language. The Quanser MultiQ I/O board [20] provided for 
data transfer between the computer subsystem and the electrical interface. 
Three A/D channels were used to sense the currents flowing through the 
rotor windings of the three brushed DC motors, while two A/D channels 
were used to read in the laser measurements. Three D / A channels deliv­
ered voltages to power the driving DC motor as well as the two DC motors 
that actuated the two dancer arms. These voltages went through two stages 
of amplification: the first stage consisted of OP07C operational amplifiers 
while in the second stage, Techron linear power amplifiers sourced a max-
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imum current of 5 A at 60 V. To ensure that the actual rotor currents 
tracked the desired current trajectories, a high-gain current feedback loop7 
was utilized to apply voltages to the three motors. The three rotor cur­
rents were measured using hall-effect current sensors. All the controllers 
were implemented using a sampling period of 0.5 msec. The string ve­
locity v (t), boundary velocities Ut (L1 , t) , Ut (L2, t), and boundary slope 
rates Uxt (Ll, t) , Uxt (L2, t) were obtained by applying a backwards differ­
ence algorithm to the string displacement, boundary displacements, and 
boundary slopes, respectively, with the resulting signals being filtered by a 
second-order digital filter. The various parameters associated with the ax­
ially moving string system were calculated using standard test procedures 
and engineering handbook tables, and were determined to be 

p = 0.02 kg/m, m = 0.03 kg, r = 0.0381 m, 

Jo = 1.451 X 1O~5 kg-m2 , J = 2.371 X 10-4 kg-m2 , Po = 12.25 N, 

L = 0.711 m, Ll = 0.394 m, L2 = 0.280 m. 
(7.63) 

Experimental Results 

The vibration of the axially moving string to a consistently applied impulse 
was studied with all gains selected to achieve the best results possible. Since 
the system model presented in Section 7.2.1 is predicated on the string 
moving with a constant axial velocity, the DC motor/belt-pulley system 
was used to regulate the string axial velocity to a desired, constant velocity 
set point Vd = 0.42 m/s. This was accomplished by the setting the motor 
torque to 

(7.64) 

For comparison, the "open-loop" response of the system, defined as a 
constant force applied by the dancer arm, was implemented with kd = 0.5 
and F (t) = -[0.8228,0.8228]T. Figure 7.3 shows the open-loop displace­
ments of the string U (L1, t) and U (L2, t) measured by the laser. A second 
comparison was performed with a standard damper control law given by 

F(t) = -ks [ ut(L1,t) ], 
Ut (L2, t) 

(7.65) 

7The reader is referred to Remark 5.4 for a discussion on issues concerning the im­

plementation of a high-gain current feedback loop. 
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with ks = 6.24 and kd 0.55. The displacements of the string near 
x = L1 and x = L2 for the damper controller are illustrated in Figure 7.4. 
The model-based controller of (7.16) was then implemented with ks = 6.19 
and kd = 0.51. The displacements of the string are shown in Figure 7.5. To 
illustrate the effectiveness of (7.64) in maintaining a constant axial velocity, 
Figure 7.6 shows the velocity setpoint error Vd - v (t) during the damper 
and model-based control experiments. 

Comparing the results of the above experiments, we observe that the 
string in the open-loop mode took several seconds to come back to the 
original displacement after the impulse disturbance was applied at approx­
imately 8 sec. While the damper control produced some improvement in 
the string response, the model-based controller cleared exhibited the best 
transient as well as steady-state response. Note from Figure 7.5 that it took 
a fraction of a second for the string to return its original displacement after 
being disturbed by the impulse. 
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FIGURE 7.3. "Open-loop" response: (a) u (L1, t) and (b) u (L2, t). 
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Damper Controf: Displacement of string near x ~ L'1 
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FIGURE 7.4. Damper controller: (a) U(Ll,t) and (b) U(L2,t). 

Model Based Control: Oi.splacement of string nSiJr x ~ l1 
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FIGURE 7.5. Model-based controller: (a) U(Ll,t) and (b) U(L2,t). 
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Camper Control : Velocity Solpolnl ErTOr 
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FIGURE 7.6. Velocity setpoint error: (a) damper controller and (b) model-based 
controller. 

7.3 Flexible Link Robot Arm 

In this section, we develop control strategies for a flexible link robot arm. 
The objectives of the control strategies are to regUlate the link displacement 
while simultaneously driving the hub position to a desired setpoint. To this 
end, we first develop a model-based control law that asymptotically fulfills 
these control objectives. We then illustrate how the control law can be 
redesigned as an adaptive controller to achieve the same stability result 
while compensating for parametric uncertainty. 

7.3.1 System Model 

The robot system, illustrated in Figure 7.7, is composed of a beam clamped 
to a rotating, rigid actuator hub with a payload/actuator mass at its free 
end-point. A torque input is applied to the hub to control the system's an­
gular position while a force input is applied to the flexible beam's end-point 
mass to regulate the beam displacement. The model for the single flexible­
link robot arm is assumed to be described by the following equations of 
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motion [8]: 
PWtt(x, t) + Elwxxxx(x, t) = pu(x, t)i/(t) (7.66) 

and 
1 . 

D (t) q(t) +"2D (t) q(t) + Vm (t) q(t) (7.67) 

+mu(L, t)wt(L, t)q(t) - Elwxx(O, t) = r(t), 

with the following boundary conditions:8 

u(O, t) = ux(O, t) = uxx(L, t) = 0 (7.68) 

and 
mwtt(L, t) - mu(L, t)q2(t) - Elwxxx(L, t) = f(t), (7.69) 

where w(x, t) is a displacement variable defined as follows: 

w(x, t) = u(x, t) + xq(t), (7.70) 

where u(x, t) denotes the link displacement at position x for time t with re­
spect to the (X, Y) coordinate system that rotates with the hub (see Figure 
7.7); q(t), q(t), q(t) represent the angular position, velocity, and accelera­
tion of the hub, respectively, with respect to the inertial reference direction 
(see Figure 7.7); p is the mass/length of the link; E I is the bending stiffness 
of the link; L is the length of the link; m represents a payload/actuator 
mass attached to the free end of the link; r(t) is the control torque input 
applied to the hub; f(t) denotes the boundary control force input applied 
to the mass; and the auxiliary functions D (t), b (t), and Vm (t) are defined 
as follows: 

d (L 
b (t) = dt D(t) = 2mu(L, t)ut(L, t) + 2p Jo u(x, t)Ut(x, t) dx, 

and 

Vm (t) = P 1L u(x, t)Wt(x, t)dx, 

with J denoting the hub's inertia. 

(7.71) 

(7.72) 

(7.73) 

The above model neglects gravitational effects, surface loads, the rotatory 
inertia of the link cross-sections, and the rotatory inertia of the mass at 
the link's free end. Furthermore, the model assumes that the motion of 

8Given the clamped boundary conditions of (7.68), we also know that Ut{O, t) = 
Uxt{O, t) = O. 
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the system is restricted to the (X, Y) plane, and that the flexible link is 
inextensible and straight when at rest. 

y 
F rcc-<:nd mass 

Hub 

FIGURE 7.7. Flexible link robot arm. 

x 

locni:11 reference 
din."Clion 

Remark 7.2 The variable transformation w(x, t) defined in (7.70) is in­
troduced to simplify the mathematical manipulations in the subsequent con­
trol development and stability analysis. Notice from the definition of (7.70) 
that the following equalities hold: 

Wx(x, t) = ux(x, t) + q(t) \Ix E [0, L] 

(7.74) 
truex, t) f [ ] 

8 Jor n 2: 2 "Ix E 0, L . xn 

~he equalities shown in (7.74) will be exploited during the subsequent con­
trol development. 

Since the control laws will consist of relatively simple functions, we will 
assume the existence of a unique solution for the dynamics given by (7.66) 
through (7.69) under the control. Based on the arguments outlined in Re­
mark 5.1, we will assume that the link displacement variable u(x, t) and its 
time derivative Ut(x, t) belong to a space offunctions that has the following 
properties. 

Property 7.3 If the potential energy for the system given by (7.66)­
(7.69), defined by 

(7.75) 

is bounded "It E [0, (0), then 88n u(x, t) is bounded for n = 2, 3, 4, xn 
\It E [0,(0), and "Ix E [O,L]. 
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Property 7.4 If the kinetic energy for the system given by (7.66)-(7.69), 
defined by 

1 {L 2 1 2 1 .2 
Ilk = "2 P Jo wt (T, t)d(T + "2 mwt (L, t) +"2D (t) q (t), (7.76) 

is bounded 'it E [0,00), then aan Ut(x,t) is bounded for n = 0,1,2, xn 
3, 'it E [0,00), and'ix E [O,L]. 

7.3.2 Problem Statement 

The control objective is to ensure that (i) u(x, t) -+ 0 'ix E [0, L] as t -+ 00 
with respect to the rotating coordinate system (X, Y) attached to the hub, 
and (ii) q(t) -+ qd as t -+ 00 with respect to the inertial reference direction 
where qd is a desired, constant, angular position. To aid the analysis of the 
link displacement regulation objective, we define an auxiliary signal 'T/ (t) as 
follows: 

'T/(t) = wt(L, t) - wxxx(L, t), (7.77) 

where w(x, t) was defined in (7.70). To quantify the angular position regula­
tion objective, we define the angular position setpoint error e(t) as follows: 

e(t) = q(t) - qd. (7.78) 

To formulate the open-loop dynamics for 'T/ (t), we differentiate (7.77) 
with respect to time and then use (7.69) to obtain 

miJ(t) = -mwxxxt(L, t) + mu(L, t)(i(t) + Elwxxx(L, t) + J(t). (7.79) 

The open-loop dynamics for e(t) are obtained by differentiating (7.78) twice 
with respect to time such that (7.67) can be used to produce 

D (t) e(t) = -~b (t) e(t) - Vm (t) q(t) - mu(L, t)w~(L, t)q(t) 
(7.80) 

+Elwxx(O, t) + ret), 

where we have used the fact that e (t) = q (t). 

7.3.3 Model-Based Control Law 

Based on the form of (7.79) and the subsequent stability analysis, the 
boundary control force is designed as follows: 

J(t) = mWxxxt(L, t) - Elwxxx(L, t) - ks'T/(t), (7.81) 
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where ks is a positive control gain. After substituting (7.81) into (7.79), we 
obtain the following closed-loop dynamics at the link's free end: 

mi](t) = -ks'T](t) + mu(L, t)i/(t). (7.82) 

Based on the form of (7.80) and the subsequent stability analysis, we design 
the hub control torque as follows: 

T(t) = -kve(t) - kpe(t) +mu(L, t)q(t)wxxx(L, t) - (3pLq(t)u2(L, t), (7.83) 

where kv, kp, and (3 are positive control gains. After substituting (7.83) 
into (7.80), we obtain the closed-loop hub dynamics as follows: 

D (t) e(t) = -~D (t) e(t) - mu(L, t)q(t)'T](t) - Vm (t) q(t) + Elwxx(O, t) 

-kve(t) - kpe(t) - (3pLq(t)u2(L, t), 
(7.84) 

where the definition of (7.77) has been utilized. 
It is interesting to note that the boundary control force of (7.81) contains 

a noncollocated term in the feedback loop (i.e., q(t) appears in the defin­
ition of'T](t) through wt(L, t)), while the control torque of (7.83) contains 
noncollocated feedforward and feedback terms (i.e., the last two terms in 
(7.83). 

Theorem 7.3 The model-based control law given by {7.81} and {7.83} 
guarantees asymptotic regulation of the link displacement and hub position 
setpoint error in the following sense: 

lim lu (x, t)1 = 0 
t-H)o 

'Vx E [0, L] 

lim Ie (t)1 = 0, 
t-+oo 

lim le(t)1 = 0 
t-+oo 

(7.85) 

(7.86) 

given that the control gains ks, kv, and {3 satisfy the following sufficient 
conditions: 

EI 
k S >2 {3 . {min{J,P,EI} Ell} 

< mm 4pmax{L4, I}' 2Lp' 16L3 . 
(7.87) 

Proof. To prove the above result, we define the following function: 

1 1 
V(t) = Eb(t) + Ec(t) + 2m'T]2(t) + 2kpe2(t), (7.88) 

where 
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and 

(7.90) 

with {3 being the control gain defined in (7.83). 
We now establish conditions on the control gain {3 to ensure that V (t) 

defined in (7.88) is non-negative. First, note that we can use (7.71) and 
(7.89) to lower bound Eb(t) as follows: 

Eb ~ ~ min {J, p, EI} (e2 + En) ~ 0, (7.91) 

where En ( t) is defined by 

(7.92) 

Now, we use (A.29)of Lemma A.13 in Appendix A to upper bound Ec(t) 
of (7.90) as follows: 

L 

Ec :=; 2{3p 10 (0'2u; + wt) dO'. (7.93) 

After applying (A.27) of Lemma A.12 in Appendix A to the u; term on 
the right-hand side of (7.93), and then utilizing (7.74) and (7.92), we have 

~L 

Ec :=;2{3p Jo (L4w;a+ wt)dO':=;2{3pmax{L4,I}En. (7.94) 

We can now use (7.94) to establish the following inequality: 

Therefore, if {3 is selected according to 

{3 min{J,p,EI} 
< 4pmax{L4, I}' 

(7.96) 

we can use (7.91) and (7.95) to develop the following inequality: 

~lEn + ~2e2 :=; Eb + Ec (7.97) 

for some positive constants ~1' ~2' Given the form of V(t) defined in (7.88) 
and the inequality given by (7.97), we can now formulate the following 
inequality: 

(7.98) 
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where .AI is some positive constant. 
After differentiating (7.88) with respect to time and substituting from 

(7.82), we have 

V (t) = Bb (t) + Be (t) - ks7]2 (t) +mu(L, t)iP (t) 7] (t) + kpe (t) e (t). (7.99) 

To determine Bb (t) in (7.99), we differentiate (7.89) with respect to time 
to obtain 

Bb = -EI IoL 
Wtwcrcrcrcrdn + EI IoL 

wMwcrcrtda + pip IoL 
UWtdn 

+e (-mu(L)q7] - Vmq + Elwxx(O) - kve - kpe - (3pLqu2(L)) , 
(7.100) 

where (7.66) and (7.84) have been utilized. If we integrate by parts, the 
first two terms on the right-hand side of (7.100), we obtain 

Bb = -Elwt(L)wxxx(L) -mu(L)q27]-kve2 -kpee- (3pLq2u2(L), (7.101) 

where the definition of (7.73) and the fact that Wxt(O, t) = q (t) (see (7.68), 
(7.74), and (7.78)) have been utilized to cancel common terms. We can now 
rewrite (7.101) into the following advantageous form: 

. EI ( 2( 2 ()) EI 2 ( )'2 Eb = -2 Wt L) + Wxxx L + 27] - mu L q 7] 

-kve2 - kpee - (3pLq2u2(L), 

upon application of (7.77). 

(7.102) 

To determine Be (t) in (7.99), we differentiate (7.90) with respect to time, 
and then substitute from (7.66) to obtain 

(7.103) 

where 
L 

Al = 2{3p 10 aUcrtwtda 

(7.104) 

A3 = 2{3pq2 1oL 
aucruda. 

First, note that the expression for Al given in (7.104) can be rewritten as 
follows: 

(7.105) 
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upon the use of the time derivative of the first equation of (7.74). After 
integrating, by parts, the first term of (7.105), we obtain 

Al = 2{3pLw;(L) - 2{3p 1£ w;da - 2{3p 1£ aUutwtda - 4{3pq 1£ aWtda , 

(7.106) 
where (7.74) has been utilized. After noticing that the third term on the 
right-hand side of (7.106) is equal to AI, we can rearrange (7.106) as follows: 

Al = (3pLw;(L) - {3p 1£ w;da - 2{3pq 1£ aWtda. (7.107) 

We now apply Holder's inequality [6] to the last term on the right-hand 
side of (7.107) to produce an upper bound on Al as shown below: 

Al ::S (3pLw;(L) - {3p 1£ w;da + 2{3p Iql J 1£ a2daJ 1£ w'fda. (7.108) 

After applying (A.30) of Lemma A.13 in Appendix A to the last term on 
the right-hand side of (7.108), we obtain the final upper bound for Al as 
follows: 

{£ W (q2 (£ ) 
Al ::S (3pLw;(L) - {3p 10 w;da + 2{3pV 3" (h + (h 10 w;da ,(7.109) 

where (h is an arbitrary positive constant. 
After integrating, by parts, the expression for A2 given in (7.104), we 

obtain 

A2 = -2{3EI (LUx(L)Wxxx(L) -1£ uuw(F(Fuda -1£ awuuwuuuda) 

(7.110) 
upon application of (7.68) and (7.74). After integrating, by parts, the first 
integral on the right-hand side of (7.110), and then applying (7.68) and 
(7.74), we obtain 

A2 = -2{3EI (LUx(L, t)wxxx(L, t) + 1£ W;u da - 1£ aWuuW(F(Fuda) . 

(7.111) 
After integrating, by parts, the last integral on the right-hand side of 
(7.111), we obtain 

A2 = -2{3EI (LUx(L)Wxxx(L) + 21£ W;uda + 1£ aWuuWu(F(Fda) 

(7.112) 
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upon application of (7.68). We can now add the expressions given in (7.111) 
and (7.112) to produce 

L 

A2 = -2{3EILux (L)wxxx (L) - 3{3El 1 W;crda . (7.113) 

Finally, we apply (A.30) of Lemma A.13 in Appendix A to the first term on 
the right-hand side of (7.113), and apply (7.74) and (A.28) of Lemma A.12 
in Appendix A to the integral term in (7.113) to obtain an upper bound 
for A2 as follows: 

A2 ~ 2{3EIL (82U;(L) + W;b:(L)) - (3EI iu;(L) - 2{3EI 1L w;crda, 

(7.114) 
where 82 is an arbitrary positive constant. 

After integrating, by parts, the expression for A3 given in (7.104), we 
obtain 

(7.115) 

After noting that the last term in (7.115) is equal to A3, we can write 
(7.115) as follows: 

A3 = (3pcl (LU2(L) -lL 
u2da) . (7.116) 

We can now substitute (7.102), (7.103), (7.109), (7.114), and (7.116) into 
(7.99) to obtain the following upper bound for V (t): 

-fJEI (i - 2L82) u;(L) - (~I - (3PL) w;(L) 

(7.117) 

( EI) 2 '2 rL 
2 - ks - 2: 'T/ - {3pq io u da. 
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If we let 81 = i jl; and 82 = :rb:, we can rewrite (7.117) as follows: 

(7.118) 

( 8 3).2 ( EI) 2 ·2 {L 2 - kv - 3{3pL e - ks - 2"" ry - {3pq io u dO". 

If the control gains ks and kv are selected according to (7.87), and {3 is 
selected to satisfy 

{3 . {Ell} 
< mm 2Lp' 16L3 ' (7.119) 

we can use (7.118) to form a new upper bound for V(t) as shown below: 

(7.120) 

where .A2 is some positive constant. 
From (7.98) and (7.120), we can state that En(t), e(t), e(t) (hence, q(t)), 

and ry(t) are bounded \;;It E [0,00). Since En(t) is bounded Vt E [0,00), 
we can use (7.92) and (A.28) of Lemma A.12 in Appendix A to show that 
u (x, t) is bounded Vt E [0,00) and \;;Ix E [0, L]. Since En (t) of (7.92) is 
bounded Vt E [0,00), the potential energy of the system given by (7.75) 
is bounded \;;It E [0,00); hence, we can use Property 7.3 to show that 

aa
n u(x,t) is bounded for n = 0,1, \;;It E [0,00), and \;;Ix E [O,L]. Since xn 

e(t) and qd are bounded Vt E [0,00), we can use (7.78) to conclude that 
q(t) is bounded \;;It E [0,00). Since u(x, t) and q(t) are bounded, we can 
use (7.70) to show that w(x, t) is bounded \;;It E [0,00) and \;;Ix E [0, L]. 
Owing to the boundedness of the potential energy, we can use Property an an 
7.3 and (7.74) to show that -a u(x, t) and -a w(x, t) are bounded for xn xn 
n = 2,3,4, \;;It E [0,00), and \;;Ix E [O,L]. Since ry(t) and wxxx(L,t) are 
bounded \;;It E [0,00), we can use (7.77) to state that wt(L,t) is bounded 
\;;It E [0,00). Based on the above boundedness statements, we can easily 
show that D (t) defined in (7.71) (upon application of (A.24) and (A.27) 
of Lemma A.12 in Appendix A) is bounded \;;It E [0,00). From the above 
information, it is easy to see that the system's kinetic energy defined in 
(7.76) is bounded \;;It E [0,00). Since the kinetic energy is bounded, we can 

utilize Property 7.4 to state that aan Ut(x, t) is bounded for n = 0,1,2,3, xn 
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Vt E [0,(0), and Vx E [O,L]. Based on the previous boundedness state­
ments, the inequalities (A.24) and (A.27) of Lemma A.12 and (A.29) of 
Lemma A.13 in Appendix A can be applied to the right-hand side of (7.72) 
and (7.73) to illustrate that iJ (t) and Vm (t) are bounded Vt E [0, (0). From 
the above information, we can conclude that the control inputs of (7.81) 
and (7.83) are bounded Vt E [0, (0). We can now use (7.67) and the fact 
that D(t) > ° (see (7.71)) to conclude that q(t) is bounded Vt E [0, (0). 
Finally, (7.66) and the second time derivative of (7.70) can be utilized to 
show that Wtt(x, t) and Utt(x, t) are bounded Vt E [0, (0) and Vx E [0, L]. 
As a result of the boundedness of D (t), we can use (7.89) and (7.92) to 
state that 

(7.121) 

From (7.120) and (7.121), we can rewrite the upper bound on V(t) as 
follows: 

(7.122) 

where >-3 is some positive constant, and g(t) is a non-negative function. 
After differentiating g( t) with respect to time, we have 

(7.123) 

Since we have illustrated that all of the system signals remain bounded, 
we can use (7.101) to show that Eb(t) is bounded; hence, we can see from 
(7.123) that iJ(t) is also bounded. We can now invoke Lemma A.6 in Ap­
pendix A to illustrate that 

lim Eb(t),7](t) = 0. 
t->co 

(7.124) 

Finally, we can utilize (7.124), the structure of Eb(t) given by (7.89), (7.91), 
(7.74), and (A.27) of Lemma A.12 in Appendix A to prove the result given 
by (7.85). 

To prove the result given by (7.86), we will utilize (7.84) in the following 
manner. Note that owing to the above boundedness statements and the 
result given by (7.85), we know all terms in (7.84) go to zero9 with exception 
of the terms containing e (t) and e (t). Hence, if we show that e(t) goes to 
zero, then it is clear that e(t) will also go to zero. To this end, we first note 

9From (7.74), we assume that 

lim Iwxx (x, t)1 = 0 'Ix E [0, LJ. 
t_oo 

lim lu (x, t)1 = 0 'Ix E [0, LJ implies that 
t_oo 
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that e(t) can be rewritten as 

e(t) = !at d~~) d( + C, (7.125) 

where C is some constant. Since we have already shown that lim e(t) = 
t ...... oo 

0, we can use (7.125) to show that 

lim rt de( () d( exists and is finite. 
t ...... oo Jo d( 

We now differentiate (7.84) with respect to time to obtain 

(7.126) 

-Vmq + EIWxxt(O) - kve - kpq - f3Lpqu2(L) - 2f3Lpqu(L)ut(L). 
(7.127) 

From the previous boundedness statements, we have shown that all of the 
signals on the right-hand side of (7.127) are bounded "it E [0,(0), except for 
the terms b (t) and lim (t). Hence, if we show b(t) and lIm(t) are bounded 
"it E [0, (0), we can use (7.127) and the fact that D (t) > ° to conclude that 
·e· (t) is bounded "it E [0, (0). After differentiating iJ (t) defined in (7.72) 
with respect to time, we have 

b = 2mu;(L) + 2mu(L)utt(L) + 2p JoL u;dcr 

- [2EI !aL UUqqqq dcr]- [2Pq !aL 
cru dcr] + 2Pq2 !aL u2dcr 

(7.128) 
upon application of (7.66) and (7.74). After integrating, by parts twice, the 
first bracketed term in (7.128), and applying Holder's inequality [6] to the 
second bracketed term in (7.128), we obtain the following upper bound for 
b (t): 

Ibl::; 2mu;(L) + 2m lu(L)llutt(L)1 + 2p !aL 
u;dcr 

+2EI lu(L)lluxxx(L)1 + 2Pq2 !aL u2dcr (7.129) 
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upon the application of (7.68). As a result of the previous boundedness 
statements, we know that all the signals on the right-hand side of (7.129) 
are bounded; hence, it is now clear that jj (t) is also bounded Vt E [0,00). 
A similar procedure can be applied to the time derivative of Vm (t) defined 
in (7.73) to obtain the following upper bound for Vm (t): 

IVml ~ P IoL 
u;dn + p 141 f%:.J IoL 

u;dn 
(7.130) 

+El lu(L)IIuxxx(L) I + EI IoL U~(Tdn + p4210L u2du. 

From (7.130) and the previous the boundedness statements, it is easy to see 
that Vm (t) is bounded Vt E [0,00). We now know that ·e (t) is bounded Vt E 

[0,00); hence, e(t) is uniformly continuous from Lemma A.l in Appendix 
A. Since e(t) is uniformly continuous, we can use (7.126) along with Lemma 
A.2 in Appendix A to conclude that 

lim e(t) = 0. 
t-+oo 

(7.131) 

We can now apply (7.131) and (7.85) to (7.84) to obtain the result given 
by (7.86).0 

7.3.4 Adaptive Control Law 

In this section, we show how the controllers of (7.81) and (7.83) can be 
redesigned to compensate for parametric uncertainty while still asymptoti­
cally stabilizing the link displacement and regulating the hub to the desired 
setpoint. From the form of (7.79) and the fact that m and El are now con­
sidered to be unknown, the boundary control force is designed as follows: 

1\ 

f(t) = mWxxxt(L, t)- El wxxx(L, t) - ks'f/(t), (7.132) 
1\ 

where m(t) and El (t) are dynamic parameter estimates for m and El, 
respectively, which are updated according to 

(7.133) 
1\ 

El (t) = 12'f/(t)wxxx (L, t), 

with '1,,2 being positive adaptation gains. After substituting (7.132) into 
(7.79), we can form the closed-loop dynamics for 'f/(t) as 

mr,(t) = -ks'f/(t) - mWxxxt(L, t)+ El wxxx(L, t) + mu(L, t)(l(t), (7.134) 
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~ 

where the parameter estimation error terms m(t) and EI (t) are defined 
as follows: 

~ /\ 

m(t) = m - m(t) EI (t) = EI- EI (t). (7.135) 

Based on the form of (7.67), the control torque is designed as follows: 

T(t) = -kve(t) - kpe(t) + m(t)u(L, t)q(t)wxxx(L, t) - j3p(t)Lq(t)u2 (L, t), 
(7.136) 

where the update law for m(t) was defined in (7.133), and p(t) represents 
a dynamic parameter estimate for p which is updated according to 

(7.137) 

with "13 being a positive adaptation gain. Upon the substitution of (7.136) 
into (7.80), the closed:"loop dynamics for e(t) is formed as follows: 

D (t) e(t) = -~D (t) e(t) - mu(L, t)q(t)7](t) 

-mu(L, t)q(t)wxxx(L, t) - Vm (t) q(t) + Elwxx(O, t) 

(7.138) 

Theorem 7.4 The adaptive boundary control law given by (7. 132}, (7.133), 
(7.137), and (7.136) ensures the same stability result given by Theorem 7.3 
provided the control gains kg, kv, and j3 defined in (7.136) are selected to 
satisfy (7. 87}. 

Proof. The following proof is based on arguments similar to those used in 
the proof of Theorem 7.3; hence, some of the details will not be repeated. 
First, we define the following function: 

1 1 ~ 2 1 
Va(t) = V(t) + "2"111m2 (t) + "2"12"1 EI (t) + "2"13"lp2(t) , (7.139) 

where V(t) was defined in (7.88) and 

p(t) = P - p(t). (7.140) 

As a straightforward extension of Theorem 7.3, if j3 defined in (7.136) is 
selected to be sufficiently small according to the condition in (7.87), we can 
formulate a lower bound for Va (t) as 
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Ala (En(t) + rht) + e2 (t) + e2 (t) + m?(t)+ i/ (t) + li(t)) ::; Va(t) 

(7.141) 
for some positive constant Ala. After differentiating (7.139) with respect to 
time and substituting from (7.66), (7.134), and (7.138), we can proceed as 
in Theorem 7.3 to obtain the following upper bound on Va (t):10 

Va::; -A2 (En(t) + rht) + lj2(t)) 

-m(t) (rJ(t)wxxxt(L, t) + e2(t)u(L, t)wxxx(L, t) + III in (t)) 

+ i1 (t) (~(t)Wxxx(L' t) - ,,' 121 (t)) 

(7.142) 
We now substitute the parameter updates laws of (7.133) and (7.137) into 
(7.142) to yield the same result as that given by (7.120). The proof of 
Theorem 7.3 can now be followed in a similar fashion to complete the 
proof, and to obtain the result given by (7.85) and (7.86). 0 

7.3.5 Experimental Evaluation 

Experimental Setup 

A schematic diagram of the experimental setup used to implement the 
controllers is shown in Figure 7.8. The experimental setup consisted of a 
flexible aluminum beam attached to the shaft of a NSK Corp., model RS-
0810, torque-controlled, 3-phase switched reluctance motor that was used 
to apply the hub control torque. To compensate for the motor friction, the 
actual control torque was defined as follows: 

Tc(t) = T(t) + 0.8q(t) + 4.5sgn(q(t)) , (7.143) 

where Tc (t) is the actual, applied control torque, T (t) was given by (7.83) 
or (7.136), and the remaining terms in (7.143) represent the viscous and 

. . _ A . . 

lONate from (7.135) and (7.140) that m= - m, El= - El, and p= - p . 
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SIDE VIEW 
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FIGURE 7.8. Schematic diagram of the flexible robot link experimental setup. 

Coulomb friction compensation feedforward terms. A lightweight plastic 
assembly supporting two air nozzles located at the end-point of the beam 
was used to apply the boundary control force. The nozzles were aligned such 
that the outlets were in diametrically opposite directions. Compressed air 
at 90 psi was supplied through the lightweight, flexible air tubes controlled 
by high-speed proportional air valves. The algebraic relationship between 
the valve's output force and input voltage was obtained by clamping the 
beam's end-point and applying known voltages to the valves. For each 
applied input voltage, a Sensor Development, model 20005, shear force 
sensor located at the beam's end-point (see Figure 7.8) was utilized to 
measure a signal directly proportional to the output force. The signal from 
the shear sensor's bridge circuit was amplified and filtered before being read 
by an analog input channel on the data acquisition board. The measured 
relationship between input voltage and output force was then inverted to 
enable the application of the desired boundary control force. 

A modular line scan camera mounted on the motor shaft and a high 
luminescence LED mounted at the beam's end-point were used to measure 
the beam's end-point displacement, u(L, t). For monitoring purposes only, 
a second LED was placed at the beam's mid-point to measure the mid­
point displacement, u(L/2, t). The camera was a 2048 pixels, linear CCD 
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camera with an 85 mm Fl.4 Nikon lens. The camera has a resolution of 
0.014 cm/pixel when the light source is one meter away, while the capture 
board hardware can provide sampling at a rate of 0.5 msec. The signal 
uxxx(L, t) was measured via the shear force sensor, while an incremental 
encoder mounted on the motor shaft was utilized to measure the hub angu­
lar position, q(t). The signals get), ut(L, t), and uxxxt(L, t) were obtained 
by using a backwards difference algorithm and a second-order digital filter. 
The various parameters associated with the flexible beam model were cal­
culated using standard test procedures and engineering handbook tables, 
and are given below: 

L = l.22 m, m = 0.21 kg, 
(7.144) 

El = 5.25 N-m2 , p = 0.35 kg/m. 

The controllers described in the sequence were implemented via the Qmotor 
real-time control environment, and were run at a sampling period of 0.5 
msec. 

Experimental Results 

The objective of the experiment was to regulate the hub angular position 
to a desired position of 20° (i.e., qd = 0.35 rad) while driving the link 
displacement to zero. In all controllers described below, the control gains 
were tuned to achieve the best performance. For comparison purposes, the 
"open-loop" response of the system, which consisted of the following control 
law: 

J(t) = 0, (7.145) 

was implemented with kv = 35 and kp = 80. Figure 7.9 shows the signals 
u(L, t), u(L/2, t), and q(t) for the open-loop system. Next, the model-based 
controller given by (7.81) and (7.83) was implemented with l1 ks = 3.5, 
kv = 20, kp = 70, and {3 = 0.35. Figure 7.10 depicts the system performance 
for the model-based controller. Finally, the adaptive controller defined by 
(7.132), (7.133), (7.136), and (7.137) was implemented by assuming no 

1\ 

knowledge of the system parameters m, El, and p (i.e., m(O) =El (0) = 
,0(0) = 0), and with ks = 7, kv = 20, kp = 62, {3 = 0.07, 1'1 = 0.001, 
1'2 = 5 X 10-5 , and 1'3 = 0.01. The parameter estimates were computed 

11 Since the restrictions on the control gains kv and f3 given in (7.87) are only sufficient 

conditions for achieving the asymptotic stability results, it comes as no surprise that the 

following results were obtained without satisfying these conditions. 
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FIGURE 7.9. Open-loop system response: (a) u(L, t), (b) u(Lj2, t), and (c) q(t). 

on-line using a trapezoidal numerical integration rule. The beam's end­
point displacement, mid-point displacement, and the hub position for the 
adaptive controller are illustrated in Figure 7.11, while Figure 7.12 shows 
the parameter estimates. 

A second experimental evaluation was performed by attaching a payload 
mass, consisting of a metal block weighting 0.08 kg, to the beam's end­
point. The three controllers were then run without retuning the control 
gains given above (in the model-based controller, m was kept at the value 
given in (7.144)). The performance of the open-loop system, model-based 
controller, and adaptive controller are shown in Figures 7.13 through 7.16. 

To compare the experimental results, Tables 7.1 and 7.2 show the max­
imum steady-state values of u(L, t), u(L/2, t), and q(t) for t E [9,1OJ sec, 
and the £2 norm12 of u(L, t) and u(L/2, t) for t E [0,10J sec for the open­
loop system, model-based controller, and adaptive controller in the two 
experimental rullS. As can be seen from the tables and the results of Fig­
ures 7.9 to 7.16, the control laws were able to damp-out the link vibrations 
efficiently while slightly improving the hub regulation when compared to 
the open-loop system. Note that although lIu(L, t)lb and Ilu(L/2, t)1I2 for 
the adaptive controller was higher than that of the model-based controller, 
the adaptive controller produced smaller steady-state displacements. This 
can be explained by the fact that since all parameter estimates were ini-

12Note that the £2 norm of a signal y(t) is defined as lIy(t)1I2 ~ J Itt: y2(u)du, where 
to and tf are the initial and final time, respectively. 
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FIGURE 7.10. Model-based controller: (a) u(L, t), (b) u(L/2, t), and (c) q(t). 
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FIGURE 7.11. Adaptive controller: (a) u(L,t), (b) u(L/2,t), and (c) q(t). 
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FIGURE 7.12. Parameter estimates: m(t), EI (t), and p(t). 
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FIGURE 7.13. Open-loop response with payload mass: (a) u(L, t), (b) u(L/2, t), 
and (c) q(t). 
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FIGURE 7.14. Model-based controller with paylo<J.d mass: (a) u(L, t), (b) 
u(L/2, t), and (c) q(t). 
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FIGURE 7.15. Adaptive controller with payload mass: (a) u(L, t), (b) u(L/2, t), 
and (c) q(t). 
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FIGURE 7.16. Parameter estimates with payload mass: m(t), EI (t), and p(t). 

TABLE 7.1. System Performance without Payload Mass 

Open-Loop Model-based Adaptive 
system controller controller 

lu(L, t)lmax 88 , 2.5 [em] 0.2 [em] 0.148 [em] 

lu(Lj2, t)lmax 88 , 0.86 [em] 0.11 [em] 0.08 [em] 

Iq(t)lmax,88 20.2° 20.07° 20.13° 

Ilu(L, t)112 0.0680 0.0244 0.0476 

Ilu(Lj2, t) 112 0.0230 0.0083 0.0155 

tialized to zero, the adaptive controller produced higher transient displace­
ments than the model-based controller; however, as the parameter estimates 
started to converge at t ::::: 2 [sec], the adaptive controller quickly damped­
out the link vibrations. Comparing the controllers' performance without 
and with the payload mass, it is interesting to note that while Ilu(L, t)112 in­
creased approximately 52% for the model-based controller, Ilu(L, t) liz only 
increased approximately 20% for the adaptive controller, which indicates 
its expected ability to cope with unknown parameters. The lu(L, t)lmax,88 
and lu(Lj2, t)lmax,88 measures of performance also indicate the ability of 
the adaptive controller to quickly damp-out the link vibrations in spite of 
payload variation. 
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TABLE 7 2 System Performance with Payload Mass .. 
Open-Loop Model-based Adaptive 
system controller controller 

lu(L, t)lmax 88 , 4.87 [cm] 0.164 [cm] 0.1 [cm] 

lu(L/2, t)lmax,ss 1.61 [cm] 0.141 [cm] 0.05 [cm] 

Iq(t)lmax,ss 20.17° 20.10° 20.09° 

Ilu(L, t)lb 0.0850 0.0370 0.0573 

Ilu(L/2, t)112 0.0277 0.0105 0.0188 

7.4 Flexible Rotor System 

In this section, we construct boundary control laws for the flexible rotor 
system depicted in Figure 7.17. Specifically, we seek to regulate the rotor 
displacement and provide hub angular velocity tracking. A pair of perpen­
dicular, boundary control forces are applied to the rotor's free end-point 
mass with the objective of stabilizing the rotor displacement while a control 
torque is applied to the hub to rotate the entire rotor system. 

7.4.1 System Model 

The rotor system under consideration is modeled as a Euler-Bernoulli beam 
clamped to a rotating, rigid hub with a payload/actuator mass attached to 
its free end. Based on the standard Euler-Bernoulli beam modeling assump­
tions, Hamilton's principle [8] can be used to show that the field equation 
for the rotor system is given by 

p (qtt (x, t) + 20 (t) Sqt (x, t) 

(7.146) 

+B (t) Sq (x, t) - 02 (t) q (x, t)) + Elqxxxx (x, t) = 0, 

where p is the mass/length of the rotor, EI is the bending stiffness of the 
rotor, () (t) ,0 (t) ,B (t) represent the hub's angular position, velocity, and 
acceleration about the x-axis (see Figure 7.17), respectively, S E ffi.2x2 

denotes the following skew-symmetric matrix: 

[ 0 -1] 
S= 1 0 ' (7.147) 

and q(x, t) E ffi.2 denotes the rotor's composite displacement vector defined 
as follows: 

T 
q (x, t) = [ u (x, t) v (x, t)] , (7.148) 
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with u (x, t) , v (x, t) denoting the displacement of the rotor in the u, v 
directions, respectively (note that the u - v coordinate system in Figure 
7.17 is a rotating coordinate system fixed to the rotor). The boundary 
conditions for the rotor system are given by13 

q (0, t) = qx (0, t) = qxx (L, t) = 0 (7.149) 

and 

m [qtt (L, t) + 28 (t) Sqt (L, t) + B (t) Sq (L, t) 

(7.150) 

-{} (t) q (L, t) - Elqxxx (L, t) = F (t), ·2 ] 

where m represents the payload/actuator mass located at the free end of 
the rotor, L denotes the length of the rotor, F (t) E ]R2 is the control force 
input vector defined as follows: 

F (t) = [ h (t) 
T 

h (t)] , (7.151) 

with h (t) , h (t) being the individual control force inputs applied at the 
free end of the rotor along the u, v directions, respectively. The dynamics 
of the rotating hub at the rotor's clamped end are given by 

JB (t) = 7 (t) , (7.152) 

where 7 (t) denotes the control torque input applied to the hub, and J 
represents the hub's inertia. 

The rotor model described above is based on the following assumptions: 
(i) the gravitational effects, surface loads, and the rotatory inertia of the 
rotor cross-sections are assumed to be negligible; (ii) the flexible rotor is 
in a straight position when the system is at rest; (iii) the flexible rotor is 
inextensible and has infinite torsional stiffness; and (iv) the inertia of the 
rotor's free end mass is negligible. 

Since the control strategies will consist of relatively simple functions, we 
will assume the existence of a unique solution for the dynamics given by 
(7.146), (7.150), and (7.152) under the control. Based on the arguments 
outlined in Remark 5.1, we will assume that the distributed variable q(x, t) 
and its time derivative qt(x, t) belong to a space of functions that has the 
following properties. 

13Given the clamped boundary conditions of (7.149), we also know that qt(O, t) = 
qxt(O, t) = O. 
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FIGURE 7.17. Schematic diagram of the flexible rotor system. 

Property 7.5 If the potential energy of the system given by (7.146) through 
(7.150), defined as 

(7.153) 

is bounded Vt E [0, (0), then aan q(x, t) is bounded for n = 2,3,4, xn 
\:It E [0, (0), and \:Ix E [0, L]. 

Property 7.6 If the kinetic energy given by (7.146) through (7.150), de­
fined as 

ilk = ~ IoL (qt (0', t) + B (t) Sq (0', t)) T (qt (0', t) + B (t) Sq (0', t)) dO' 

+ ; (qt (L, t) + B (t) Sq (L, t)) T (qt (L, t) + B (t) Sq (L, t)) 

(7.154) 

is bounded Vt E [0, (0) , then aan qt(x, t) is bounded for n = 0,1,2,3, xn 
\:It E [0, (0), and \:Ix E [0, L]. 

7.4.2 Problem Statement 

The control objective is to ensure that (i) q(x, t) ~ 0 \:Ix E [0, L] as t ~ 00, 

and (ii) B(t) ~ Wd (t) as t ~ 00 where Wd(t) denotes the desired angu-
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lar velocity trajectory for the rotor (we assume that Wd (t) and Wd (t) are 
bounded signals). To aid the analysis of the rotor displacement regulation 
objective, we define an auxiliary signal 1] (t) E JR2 as follows: 

1] (t) = qt (L, t) + 0 (t) Sq (L, t) - qxxx (L, t) . (7.155) 

To quantify the angular veloCity tracking objective, we define the angular 
veloCity tracking error e (t) as 

(7.156) 

With the intent of preparing for the design of the subsequent control laws, 
we will now obtain the open-loop dynamics for the auxiliary signal 1] (t) 
and angular veloCity tracking error e (t) . To this end, we first differentiate 
(7.155) with respect to time, and then multiply the resulting expression by 
m. After substituting for mqtt (L, t) from (7.150), we obtain the following 
open-loop dynamics for 1] (t): 

. ·2 
mil (t) = -me (t) Sqt (L, t) + me (t) q (L, t) - mqxxxt (L, t) 

(7.157) 

+Elqxxx (L, t) + F (t) . 

After differentiating (7.156) with respect to time, multiplying the resulting 
expression by J, and substituting for fa (t) from (7.152), we can obtain the 
open-loop dynamics for e(t) as follows: 

Je (t) = -Jwd (t) + T (t) . (7.158) 

7.4.3 Model-Based Control Law 

In this section, we present the design of a model-based boundary control 
law. Based on the structure of (7.157) and the subsequent stability analysis, 
the control force input is designed as follows: 

F (t) = -ks1] (t) - Elqxxx (L, t) 

-m (02 (t) q (L, t) - 0 (t) Sqt (L, t) - qxxxt (L, t)) , 
(7.159) 

where ks is a positive control gain. After substituting (7.159) into (7.157), 
we can formulate the closed-loop dynamics for 1] (t) as follows: 

mil (t) = -ks1] (t) . (7.160) 
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Based on the form of (7.158) and the subsequent stability analysis, the 
control torque input is defined as follows: 

T (t) = JWd (t) - kre (t) , (7.161) 

where kr is a positive control gain. After substituting (7.161) into (7.158), 
we obtain the closed-loop dynamics for e (t), as shown below: 

Je (t) = -kre (t). (7.162) 

Theorem 1.5 The model-based control law given by (1.159) and (1.161) 
ensures that the rotor displacement and the angular velocity tracking error 
are exponentially regulated in the following sense: 

Vx E [O,L] 

(7.163) 

le(t)1 :::; 

where .AI, .A2, and .A3 are some positive bounding constants, and "'0 is posi­
tive constant defined as 

"'0 = ~P 10L 
(qt{a, 0) + e (0) Sq (0', 0)) T (qt{a, 0) + e (0) Sq (0', 0)) dO' 

(7.164) 
To ensure that the result given in (1.163) is valid, the control gain ks must 
be selected to satisfy the following sufficient condition: 

EI 
ks > 2' (7.165) 

Proof. To examine the stability of the closed-loop system, we define the 
following function: 

1 1 
V (t) = Eb (t) + Ec (t) + 2mr? (t) 'fJ (t) + 2Je2 (t) , (7.166) 

where the energy related term Eb (t) is defined as follows: 

Eb (t) = ~ P 10L 
(qt{ 0', t) + e (t) S q (0', t) ) T (qd 0', t) + e (t) S q (0', t)) dO' 

(7.167) 
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and the "cross" term Ec(t) is defined as 

(7.168) 

with (3 being a positive weighting constant. 
To ensure that V (t) defined in (7.166) is non-negative, first note that 

the inequality (A.29) of Lemma A.13 in Appendix A can be used to upper 
bound Ec(t) of (7.168) as follows: 

Ec (t) '5: 2{3pL 1L [q; qq + (qt + iJsq) T (qt + iJSq) ] 00. (7.169) 

We can also lower bound Eb (t) of (7.167) as follows: 

Eb (t) 2: ~ min {p, EI} 1L [q;qqqq + (qt + iJSq) T (qt + iJSq) ] da. 

(7.170) 
After applying the inequalities given in (A.27) of Lemma A.12 in Appendix 
A to (7.169), we can use the inequality of (7.170) to obtain the following 
bounds for Ec (t): 

4{3pLmax{I,L2} () () 4{3pLmax{I,L2} () ( ) 
- min {p, EI} Eb t '5: Ec t '5: min {p, EI} Eb t. 7.171 

Provided {3 is selected to satisfy the following inequality: 

{3 min {p, EI} 
< 4pLmax{I,L2}' 

(7.172) 

we can use (7.171) to state that 

(7.173) 

where el,e2 are some positive constants. Based on the structure of (7.166) 
and (7.173), we can formulate the following for V (t): 

),1 (1111 (t)112 + e2 (t) + Eb (t») '5: V (t) '5: ),2 (1111 (t)1I2 + e2 (t) + Eb (t») , 
(7.174) 

where ),1 and ),2 are defined as follows: 

_ . {m J 4{3pLmax {I, L2}} 
),1 - mm 2' 2' 1- min{p, EI} > 0 

(7.175) 

_ {m J 4{3PLmax{1,L2}} 
),2 - max 2' 2' 1 + min{p,EI} > 0, 
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with f3 satisfying (7.172). 
After differentiating (7.166) with respect to time, and then substituting 

from (7.162) and (7.160), we have 

(7.176) 

To determine Bb (t) in (7.176), we differentiate (7.167) with respect to time, 
substitute the field equation of (7.146), and cancel common terms to obtain 

Bb =Bl [1L 
q;aqaatda -1L 

q[ qaaaada 1 + BEl [1L 
qTSqaaaada 1 

(7.177) 
After integrating, by parts once, the first bracketed term in (7.177), inte­
grating, by parts twice, the second bracketed term in (7.177), applying the 
boundary conditions given in (7.149), and then canceling common terms, 
we obtain 

Bb = -Elq'Ixx (L) (qt (L) + BSq (L)) , (7.178) 

which can be rewritten as 

. El ( . )T ( . ) Eb = -2 qt{L) + (}Sq (L) qt{L) + (}Sq (L) 

(7.179) 
El T ( ) El T 

-2qxxx L qxxx (L) + 2'T/ 'T/ 

upon application of (7.155). 
To determine Be (t) in (7.176), we first differentiate (7.168) with respect 

to time to obtain 

Be = 2f3p 1L aq;t (qt + BSq) da + 2f3p 1L aq; (qtt + eSq + BSqt) da. 

(7.180) 
After substituting (7.146) into (7.180) for pqtt, we obtain 

Be = Al +A2 +A3 +A4 +A5, 

where the auxiliary terms Ai are defined as follows: 

(7.181) 

(7.182) 



www.manaraa.com

256 7. Boundary Control Applications 

After integrating, by parts, the A l , A 2 , and A3 terms in (7.182), and then 
applying the boundary conditions of (7.149), we have 

Al = (3p (Lq[ (L) qt (L) - 1L q[ qtd(5) , 

(7.183) 

and 

A3 = -2(3EI (Lq; (L) qxxx (L) - 1L q~qaaad(5 - 1L (5q~aqaaad(5) . 

(7.184) 
After integrating, by parts, the first integral in (7.184), we obtain the fol­
lowing expression: 

A3 = -2(3EI (Lq; (L) qxxx (L) + 1L q~aqaad(5 - 1L (5q~aqaaad(5) 
(7.185) 

upon application of (7.149). After integrating, by parts, the second integral 
in (7.185), we have 

A3 = -2(3EI (Lq; (L) qxxx (L) + 2 1L q~aqaad(5 + 1L (5q~aqaaad(5) 
(7.186) 

upon use of (7.149). After adding (7.185) and (7.186), we obtain 

A3 = -(3EI (2Lq; (L) qxxx (L) + 3 1L q~aqaad(5) . (7.187) 

Finally, we apply (A. 30) of Lemma A.13 and (A.28) of Lemma A.12 in 
Appendix A to the first and second terms on the right-hand side of (7.187), 
respectively, to formulate the following upper bound for A3: 

A3:S 2(3EI L (8q; (L) qx (L) + ~q;xx (L) qxxx (L)) 

(7.188) 
(3EI T {L T 

-Lqx (L) qx (L) - 2(3EI Jo qaaqaad(5, 

where 8 is an arbitrary positive constant. After integrating, by parts, the 
expression for A4 in (7.182), we have 

A4 = 2(3pi/ (LqT (L) q (L) - 1L qT qd(5) - 2(3pi/ 1L (5qT qad(5. (7.189) 
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Since the last term on the right-hand side of (7.189) is equal to A4 , we can 
rewrite the expression for A4 as follows: 

A4 = (3pe2 (LqT (L) q (L) -lL 
qT qda) . (7.190) 

We can now substitute (7.179), (7.181), (7.183), (7.188), (7.190), and the 
expression for A5 given in (7.182) into (7.176) to formulate the following 
upper bound for V(t): 

V:S - (ks - ~I) 1177112 - kr e2 

- (~I -(3PL) (qt(L)+eSq(L))T (qt(L)+eSq(L)) 

( 1 2(3L) T -EI "2 - -8- qxxx (L)qxxx (L) 

-(3EI (~ - 2L8) q; (L) qx (L). 

If we select the positive constant 8 such that 

1 
8 < 2L2' 

(7.191) 

(7.192) 

and, in addition, restrict the control gain ks and the weighting constant (3 
as follows: 

EI ks >""2 (3 . {EI I} 
< llllll 2pL' 8L3 ' 

then V (t) can be further upper bounded as shown below: 

V:S - (ks - ~I) 1177112 - kre2 

(7.193) 

( 1 rL T 1 rL ) 
-2(3 "2 P Jo (qt + eSq) (qt + eSq) da + "2EI Jo q;aqaada . 

(7.194) 
Finally, by applying the definition of Eb (t) given in (7.167) to the right­
hand side of (7.194), V(t) can be upper bounded as follows: 

V (t) :S -A3 (1177 (t) 112 + e2 (t) + Eb (t)) , (7.195) 
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where A3 is defined as follows: 14 

A3 = min {ks - ~I ,kr,2{3}. (7.196) 

Based on the structure of (7.174) and (7.195), we can invoke Lemma AA 
in Appendix A to obtain the following solution for (7.195): 

v (t) ~ V (O)exp (- ~:t) 

~ A2 ( Eb (0) + 111] (0) 112 + e2 (0)) exp ( - ~: t) (7.197) 

= A2KO exp ( - ~:t) , 
where (7.167) was used to define the constant KQ. In addition, we can use 
(7.174), (7.167), and (A.28) of Lemma A.12 in Appendix A to formulate 
the following inequalities: 

EI 1 EI rL T 2"" L3 qT (x, t) q (x, t) ~ 2"" Jo qcrcr (u, t) qcrcr (u, t) du 

(7.198) 

~ Eb(t) ~ ;1 Vet) Vx E [O,L] 

and 

(7.199) 

The result given by (7.163) now follows directly from (7.197), (7.198), and 
(7.199).0 

Remark 7.3 Note that the proof of TheOrem 7.5 requires the weighting 
constant {3 to be selected sufficiently small to satisfy the conditions of (7.172) 
and (7.193). Thus, the overall condition on {3 can be written as follows: 

. {min{P,EI} ElI} 
0< (3 < rom 4pLmax{L2, If 2pL' 8L3 . (7.200) 

Remark 7.4 From (7.174) and (7.195), we can state that Eb(t), e(t), and 
1](t) are bounded Vt E [0,00). Since Eb (t) is bounded Vt E [0,00), we 'can 
use (7.167) and (A.28) of Lemma A.12 in Appendix A to show that q (x, t) 

14Note that >'3 is positive as a result of the first condition given in (7.193). 
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is boundedVt E [0,00) andVx E [O,L]. Since Eb(t) is boundedVt E [0,00), 
the potential energy given by (7.153) is bounded Vt E [0, 00); hence, we 

(;n 
can use Property 7.5 to show that -a q(x, t) is bounded for n = 2, 3, 4, xn 
Vt E [0,00), and Vx E [O,L]. Since e(t) and Wd(t) are bounded Vt E [0,00), 
we can use (7.156) to state that e (t) is bounded Vt E [0,00). Since TJ(t), 
e (t), q (L, t), and qxxx(L, t) are all bounded Vt E [0,00), we can use (7.155) 
to state that qt (L, t) is bounded Vt E [0,00); hence, the kinetic energy of 
the mechanical system defined in (7.154) is bounded Vt E [0,00). Since the 

kinetic energy is bounded, we can use Property 7.6 to state that aan qt(x, t) xn 
is bounded for n = 0, 1, 2, 3, Vt E [0,00), and Vx E [0, L]. From the above 
information, we can state that the control inputs of (7.159) and (7.161) are 
all bounded; hence, we can utilize (7.146), (7.150), and (7.152) to show that 
qtt(x, t) and B(t) remain bounded Vt E [0,00) and Vx E [0, L). 

7.4.4 Adaptive Control Law 

In this section, we illustrate how the model-based control law can be re­
designed to compensate for constant parametric uncertainty while asymp­
totically regulating the rotor displacement and the angular velocity tracking 
error. Specifically, based on the subsequent stability analysis, the control 
force is defined as follows: 

F (t) = -ksTJ (t) - EI (t) ne (t) - m (t) nm (t) , (7.201) 

where TJ (t) was defined in (7.155), EI (t) is a dynamic estimate of the 
rotor's bending stiffness, m (t) is a dynamic estimate of the mass, and the 
auxiliary functions ne (t) ,nm (t) E ]R2 are defined as follows: 

·2 . ne (t) = qxxx (L, t) nm (t) = () (t) q (L, t) - () (t) Sqt (L, t) - qxxxt (L, t) . 
(7.202) 

Motivated by the subsequent stability analysis, the bending stiffness and 
mass estimates are updated according to 

EI (t) = 'l'en; (t) TJ (t) in (t) = 'l'mn;:' (t) TJ (t) , (7.203) 

where 'l'e,'I'm are positive adaptation gains. After substituting (7.201) into 
the open-loop dynamics of (7.157), we obtain the following closed-loop dy­
namics for TJ (t): 

mr, (t) = -kaTJ (t) + EI (t) ne (t) + in (t) nm (t) , (7.204) 
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where (7.202) has been utilized, and EI (t) ,iii (t) denote the parameter 
estimation errors defined as follows: 

EI (t) = EI - EI (t) iii (t) = m - m (t) . (7.205) 

Based on the subsequent stability analysis, the control torque input is de­
fined as 

T (t) = J(t) Wd (t) - kre (t), (7.206) 

where J(t) denotes the estimate of the hub inertia that is updated by 

J (t) = -'YjWd (t) e (t) , (7.207) 

with 'Yj being a positive adaptation gain. After substituting (7.206) into 
the open-loop dynamics of (7.158), we obtain the closed-loop dynamics for 
e (t) as follows: 

Je (t) = -kre (t) - J (t) Wd (t) , (7.208) 

where the inertia estimation error J (t) is defined as follows: 

J(t)=J-J(t). (7.209) 

Theorem 1.6 The adaptive control law given by (7.201), (7.203), (7.206), 
and (7.207) ensures that the rotor displacement and the angular velocity 
tracking error are asymptotically regulated in the following sense: 

lim Ilq (x, t)11 ,Ie (t)1 = 0 
t-+oo 

'<:Ix E [O,LJ, (7.210) 

provided the control gain ks is selected to satisfy (7.165). 

Proof. The following proof is based on arguments similar to those used in 
the proof of Theorem 7.5; hence, some of the details will not be repeated. 
To prove the result given by (7.210), we define the following function: 

(7.211) 

where V (t) was previously defined in (7.166), EI (t) ,iii (t) were defined in 
(7.205), and J (t) was defined in (7.209). If f3 in (7.168) is selected suffi­
ciently small according to the condition given in (7.172), we can follow the 
arguments given in the proof of Theorem 7.5 to formulate bounds on Va (t) 
as shown below: 

Ala (11"7112 + e2 + Eb + El + iii2 + ]2) :::; Va (t) 

(7.212) 
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where }.la, }.2a are some positive bounding constants. 
After differentiating (7.211) with respect to time, and then substituting 

from (7.146), (7.204), and (7.208), we can follow the derivations used in 
Theorem 7.5 to obtain the following upper bound for the time derivative 
of Va (t): 

Va(t):S -}.3 (Eb + 117]11 2 + e2 ) + EI ( nr 7] + 1';;1 EI) 

(7.213) 

+m (n;"7]+Y;;,1 7h) + j (Wde+l'jl j), 
where }.3 is the positive constant defined in (7.196). We can now substitute 
the parameter update laws given by (7.203) and (7.207) into (7.213), and 
then proceed in a similar manner as in the proof of Theorem 7.5 to obtain 
a simplified upper bound on the time derivative of Va (t) 

Va (t) :S -}.3 (7]T (t) 7] (t) + e2 (t) + Eb (t)) ~ -ga (t). (7.214) 

We can now use (7.212), (7.214), and arguments similar to those outlined 
in Remark 7.4 to state that all signals remain bounded during closed-loop 
operation. From (7.214), the time derivative of ga (t) can be found to be 

ga (t) = }.3 (27]T (t) iJ (t) + 2e (t) e (t) + Eb (t)) . (7.215) 

Since we know that all system signals remain bounded 'it E [0,00), we 
can use (7.179), (7.204), and (7.208) to show that Eb (t), iJ (t), and e (t) 
are bounded Vt E [0,00); hence, we can see from (7.215) that the time 
derivative of the right-hand side of (7.214) is also bounded Vt E [0,00). We 
can now apply Lemma A.6 in Appendix A to show that 

lim Eb (t), 117] (t)11 , le(t)1 = O. 
t->oo 

(7.216) 

Finally, we can use (7.216) and the inequality-type bound developed in 
(7.198) to obtain the result given by (7.210). 0 

7.4.5 Experimental Evaluation 

Experimental Setup 

A schematic diagram of the experimental setup used to implement the 
controllers is shown in Figure 7.18. The experimental setup consisted of a 
flexible rotor (hollow PVC pipe 0.016 m in diameter) rotated by a brushed 
DC motor via a belt-pulley transmission. A circular disk, which served as 
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the payload mass, was made of magneto-ferrous material and was mounted 
at the free end of the rotor. Two linear CCD cameras, placed 90 deg apart, 
measured the free end-point position of the rotor q(L, t) via an LED at­
tached to the center of the free end payload. The ultra-high-intensity (5000 
mcd) LED with a viewing angle of 30 steradians was detected by the cam­
eras, which were placed at a distance of 0.86 m below the LED. The data 
provided by the camera was sampled at 2 kHz, and went through several 
stages of hardware and software decoding before the data was available 
as the rotor end-point position in meters. A high-sensitivity slip-ring was 
placed at the clamped end of the rotor to provide the necessary signals from 
the rotating shear sensor and LED. At the end of the rotor, two pairs of 
electromagnets15 were arranged to apply the control forces h (t) and h (t) 
on the payload mass at the end-point. A custom designed software commu­
tation strategy ensured that the desired force commanded by the control 
law was applied to the payload. Roughly speaking, the commutation strat­
egy involved translation of the desired force trajectory into desired current 
trajectories. To ensure that the actual magnetizing currents track the de­
sired current trajectories, a high-gain current feedback loop was utilized to 
apply voltages to the four electromagnets and the brushed DC motor.16 
The four magnetizing currents were measured using hall-effect current sen­
sors. A two-axis shear sensor, attached just above the payload mass, was 
used to measure the shear at the rotor's free end (i.e., qxxx(L, t)) along the 
u and v axes. 

The controllers were implemented via the Qmotor control environment. 
See Appendix D for a description of the C code used to implement the 
control algorithm. All the controllers were implemented using a sampling 
period of 0.5 msec. The data acquisition system consisted of four AID 
channels to sense the currents flowing through the coils of the electromag­
nets, two more AID charmels to read the shear sensor signals, and five D I A 
charmels to output the voltages that powered the four electromagnets and 
the DC motor. These voltages went through two stages of amplification; 
the first stage consists of AD-624 instrumentation amplifiers, while in the 
second stage, Techron linear power amplifiers connected in the master-slave 
configuration sourced a maximum current of 20 A at 200 V. The rotor's 
end-point velocity, the hub's angular velocity, and the time derivative of the 
end-point shear were obtained by use of a backwards difference algorithm 
applied to the end-point position, angular position, and end-point shear, 

15The 2 kg electromagnets had a 10 cm airgap and a bandwidth of 2 kHz. 
16The reader is referred to Remark 5.4 for a discussion on issues concerning the im­

plementation of a high-gain current feedback loop. 
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FIGURE 7.18. Schematic diagram of the flexible rotor experimental setup. 

respectively, with the resulting signals being filtered by a second-order dig­
ital filter. The various parameters associated with the flexible rotor system 
were calculated using standard test procedures and engineering handbook 
tables, and are given below: 

EI = 3.8 x 10-7 N_m2 , m = 0.25 kg, 
(7.217) 

J = 3.6 X 10-5 kg_m2 , p = 0.3 kg/m. 

Experimental Results 

The objective of the experiment was to regulate the angular velocity of the 
rotor to a desired setpoint Wd = 380 rpm while driving the rotor displace­
ment in the u and v axes to zero. For comparison, the "open-loop" response 
of the system, which consisted of the following control law: 

T (t) = -kre (t) F(t) = 0, (7.218) 
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FIGURE 7.19. Open-loop response for Wd = 380 [rpm]: (a) u (L, t) and (b) 
v (L, t) . 

was implemented with kr = O.B. Figure 7.19 shows the rotor's free end 
displacements along the u and v axes (Le., u (L, t) and v (L, t)). A second 
comparison was performed with a standard damper controller formulated 
as shown below: 

T (t) = -kre (t) (7.219) 

The control gains kr = 0.9 and kd = 10.2 resulted in the best controller 
performance. The free end displacements of the rotor along the u and v axes 
are illustrated in Figure 7.20. Next, the model-based controller of (7.159) 
and (7.161) was implemented. The set of control gains that resulted in the 
best performance was determined to be ks = 1.24 and kr = 0.92. The 
rotor's free end displacements along the u and v axes, and the angular 
velocity setpoint error are illustrated in Figures 7.21 and 7.22, respectively. 

Finally, the adaptive controller given by (7.201), (7.203), and (7.161) 
was implemented. The dynamic estimates met) and BI(t) were initialized 
to approximately BO% of their nominal values, while the estimate of the 
parameter J was not required for the angular velocity setpoint problem 
(Le., Wd = 0). A projection algorithm was utilized in the adaptive update 
laws to ensure that parameter estimates remained between known lower 
and upper bounds (for details on the use of adaptive projection algorithms 
see [24]). The parameter estimates were computed on-line using a stan­
dard, trapezoidal numerical integration rule. The best performance of the 
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FIGURE 7.20. Damper controller for Wd = 380 [rpm]: (a) u (L, t) and (b) v (L, t). 
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FIGURE 7.21. Model-based controller for Wd = 380 [rpm]: (a) u (L, t) and (b) 
v (L, t) . 
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FIGURE 7.24. Adaptive controller for Wd = 380 [rpm]: (a) m (t) and (b) Ei (t). 

adaptive controller was achieved with the following set of gains: ks = 1.27, 
kr = 0.89, Ie = 0.3 X 10-3, and 1m = 7 X 10-3 • Figure 7.23 shows the 
free end displacements while Figure 7.24 depicts the dynamic parameter 
estimates. The angular velocity setpoint error for the adaptive controller 
was very similar to the result obtained for the model-based controller (see 
Figure 7.22) and hence is omitted. Comparing the results of the above 
experiments, we first observe that, while the peak steady-state, free-end 
rotor displacement of the damper controller was approximately 16.7% of 
the peak open-loop displacement, the peak steady-state, free-end rotor dis­
placement of the model-based controller was only about 4.7% of the peak 
open-loop displacement. The peak steady-state, free-end rotor displacement 
for the adaptive controller settled to approximately 6.1% of the open-loop 
displacement. We also note that the angular velocity setpoint error was ap­
proximately 0.01 % ofthe desired angular speed in the damper, model-based 
and adaptive controllers. 

The model-based controller of (7.159) and (7.161) was also implemented 
with the desired angular velocity of the rotor Wd set to 1000 rpm. Figure 
7.25 shows the free end displacement of the rotor along the u and v axes. 
At such high speeds, any impact of the actuator mass with the magnetic 
bearings can cause damage to the experimental setup; hence, the system 
was not run in the open-loop mode at this desired speed. 
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FIGURE 7.25. Model-based controller for Wd = 1000 rpm: (a) u (L, t) and (b) 
v (L, t). 

To evaluate the system performance when subjected to a desired, time­
varying angular velocity, the model-based control law defined in (7.159) 
and (7.161) was implemented with the desired angular velocity trajectory 
set to 

Wd (t) = 900 (1 + 0.15 sin (0.75t))(1 - exp (-3t)) rpm. (7.220) 

Figures 7.26 and 7.27 show the desired angular velocity trajectory, the 
angular velocity tracking error and the free end displacements of the rotor 
along the u and v axes. Again, at such high speeds, it was deemed unsafe to 
run the system in the open-loop mode. It can be seen from Figures 7.25 and 
7.27 that the performance of the controllers for the setpoint and tracking 
objectives are comparable at high speeds around 1000 rpm. 

7.5 Notes 

A number of researchers have investigated the vibration control for axially 
moving materials such as webs. For example, Ulsoy [25] demonstrated how 
control and observation spillover can destabilize the vibration of an axially 
moving string under state feedback controL Specifically, the control design 
of [25] was based on a reduced-order, discretized version of the infinite 
dimensional, axially moving string model. Unfortunately, point actuators 
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FIGURE 7.26. Model-based controller for angular velocity tracking; (a) Wd (t) 
and (b) e (t). 

i 

0.02'~---....,-----.------,----.,..---.... --; 
(a) End peine ~ispl.OOIIIIIn1 .~ " Olds 

0,01 . , ... . "., .. ,." ... . "., .. ,.,. " .•.. ,."., ... 

-0.01 ., .. . . , .. , .. ,." .... , ; .. '.".' .... '.".~.' .. , .. , .. ,. , .... +, .. ". , ..... , ... ?- .... 

-o.02L---------'---------'----------'---------~-------L--....J 
o 10 15 20 25 

0.02 

0,01 

-0,01 

-0,02 
0 

, ••••••••• , ••••••• , •••••• , •••• : •• • ••••••••••••••• ;0' •• " .... . . .. . . 

.. ... . ~ ..... , ......... ,. -: .... , .. " ....... :' ... ............ -:- ........... . . . . . 

10 15 
Timo 's) 

20 25 
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can force high-frequency modes that have not been included in the reduced­
order, discrete model, hence making the closed-loop system unstable. To 
avoid spillover instabilities [3], Yang and Mote [28J used a transfer func­
tion approach to develop a class of asymptotically stabilizing controllers 
for distributed parameter models of axially moving strings and beams. Us­
ing a carefully positioned point sensor and point actuator, a quasi-passive 
controller ensured that all of the vibration modes decay to zero. In [23J, 
Renshaw et al. illustrated that Lyapunov theory can be applied to axially 
moving systems without using the expected material derivative for time 
differentiation of the Lyapunov function. In [10J, Lee and Mote developed 
Lyapunov-based, boundary control laws that asymptotically stabilize the 
vibration of an axially moving string and minimize the energy reflected from 
the boundaries. A number of other researchers have developed controllers 
for distributed parameter systems similar to the axially moving web. For 
example, Morgtil [16} introduced dynamic, boundary feedback controllers 
for the wave equation that included proportional and strictly positive real 
derivative feedback. In [7], Joshi and Rahn developed and experimentally 
implemented boundary controllers for a linear gantry crane model with a 
flexible cable, while in [1 J, Baicu et al. experimentally demonstrated how 
a similar boundary control law can be used to stabilize the out-of-plane 
vibration of a flexible cable. 

For the flexible link robots, most control design work has been directed 
towards discretized models (see [29J for a literature review of finite di­
mensional model-based controllers for flexible link robots); however, some 
boundary control strategies based on distributed parameter models have 
been proposed. For example, Luo et al. [l1J-[14J and Morgtil [17J utilized 
linear PDE models (the ODE dynamics of the actuator hub were neglected) 
to develop vibration control strategies to regulate the link displacement. 
The control inputs in [17J consisted of a boundary force and torque both 
applied to the link's free end instead of a torque applied to the actuator 
hub as in the work of Luo et al. Later, in [18J Morgtil, used a linear hybrid 
model to design a control law, consisting of a torque applied to the hub 
and boundary force and torque applied to the link's free end, which ensured 
that the link displacement and the hub position setpoint error were both 
asymptotically regulated. Ge et al. [5J augmented the linear hybrid model 
of [18J with a linear ODE dynamics of a payload mass at the link's free end 
to design a nonlinear strain feedback control law which guaranteed only 
closed-loop stability (i.e., the asymptotic or exponential regulation of the 
link displacement and hub position were not explicitly proven). Recently 
in [21], Queiroz et al. designed a boundary control strategy for a nonlinear 
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hybrid model of flexible link robots that asymptotically regulated the link 
displacement and hub position. 

The vibration control of flexible rotor systems is another application 
that has received some focused attention. For example, Baillieul and Levi 
[2] introduced an idealized model for studying the dynamics and control 
of rotating Euler-Bernoulli beam-like structures. Specifically, the rotor sys­
tem studied in [2] consisted of an Euler-Bernoulli beam perpendicularly 
attached to the center of a rigid rotating hub. However, the vibration of 
the beam was confined to a single plane that was fixed with respect to the 
rotating hub (Le., one-dimensional displacement, flexible rotor system). For 
this simplified flexible rotor model, Baillieul and Levi [2] and later Bloch 
and Titi [4] illustrated the effects of structural and viscous damping, respec­
tively, on the open-loop system response. Subsequently, Xu and Baillieul 
[26, 27], MorgUl. [19], an~ Laousy et aL [9] proposed boundary controllers 
to achieve regulation of the angular velocity and beam displacement pro­
vided the desired angular velocity setpoint was sufficiently small. In [22], 
Queiroz et al. augmented the nonlinear rotor model used in [9] to include a 
payload/ actuator mass at the free end of the rotor. An adaptive boundary 
controller was then proposed which asymptotically stabilized the rotor dis­
placement and angular velocity with the restriction on the desired angular 
veloCity setpoint still in place. 
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Appendix A 
Mathematical Background 

In this appendix, we present several mathematical tools in the form of 
definitions and lemmas that aid the control designs and closed-loop stability 
analyses presented in the book. The proofs of most of the following lemmas 
are omitted, but can be found in the cited references. 

Definition A.I ['lj 

Let I(t) E IR be a function of time on [0,00). Let the 2-norm (denoted 
by 11·112) of I(t) be defined as 

II/(t)1I2 = 100 
j2(r) dr. (A.I) 

If II/(t)lb < 00, then we say that the function I(t) belongs to the subspace 
£2 of the space of all possible functions (Le., I(t) E £2). Let the oo-norm 
(denoted by 11·1100) of I(t) be defined as 

II/(t)lIoo = sup I/(t)l· 
t 

(A.2) 

If II/(t) 1100 < 00, then we say that the function I(t) belongs to the subspace 
£00 of the space of all possible functions (i.e., I(t) E £00). 
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Definition A.2 [9} 

Let f(t) E IR be a function of time on [0,00). The function f(t) is uni­
formly continuous if for each positive number Eo, there exists a positive 
number 00 such that 

where tl is a specific instant of time. 

Lemma A.1 [8} 

Let f(t) E IR be a function of time on [0,00). If j(t) ~ ftf(t) is bounded 
for t E [0,00), then f.(t) is uniformly continuous for tE [0,00). 

Lemma A.2 [5} 

Let f(t) E IR be a function of time on [0,00). If f(t) is uniformly contin­
uous and if the integral 

lim t If(r)1 dr 
t-+oo 10 (A A) 

exists and is finite, then 

lim If(t)1 = 0. 
t-+oo 

(A.5) 

Lemma A.3 [7} 

Let f(t) E IR be a function of time on [0,00). If f(t) E Coo, j(t) E Coo, 
and f(t) E C2, then 

lim f(t) = 0. 
t-+oo 

(A.6) 
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Lemma A.4 [1J 

Let Vet) E IR be a non-negative function of time on [0, (0) that satisfies 
the differential inequality 

Vet) ~ -),V (t), (A.7) 

where), is a positive constant. Given (A.7), then 

Vet) ~ V(O)exp(-)'i) Vt E [0,(0), (A.8) 

where exp (.) denotes the base of the natural logarithm. 

Lemma A.5 [1J 

Let Vet) E IR be a non-negative function of time on [0, (0) that satisfies 
the differential inequality 

v ~ -),V +€, (A.9) 

where), and € are positive constants. Given (A.9), then 

€ 
Vet) ~ V(O) exp (-)'i) + - (1 - exp (-)'i)) Vt E [0, (0). 

)' 
(A.10) 

LemmaA.6 

Let Vet) E IR be a non-negative function of time on [0,(0). If (i) Vet) ~ 
- J(t) where J(t) is a non-negative function, and (ii) J(t) is uniformly con­
tinuous (or if j (t) E .coo), then 

lim J(t) = O. t-+oo (A.ll) 

Proof. First, we define the following function: 

Vn(t) =V(t)-fo
t 

(V(r)+J(r)) dr, (A.12) 

which is lower bounded by zero since Vet) ~ 0 and Vet) ~ - J(t). If we 
differentiate (A.12) with respect to time, we obtain 

Vn(t) = - J (t) . (A.13) 
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We now apply a lemma from page 125 of [8] that states that if (i) Vn(t) E IR 
is a non-negative function of time on [0,00), (ii) Vn(t) = - f(t) where f(t) 
is a non-negative function, and (iii) f(t) is uniformly continuous, then 

lim f(t) = O. t->oo (A.14) 

Application of the above lemma to (A.12) and (A.13) yields the result given 
by (A.ll). D 

Lemma A.7 [t] 

Let r(t),e(t) E IR be functions of time on [0,00). Given the differential 
equation 

r (t) = e (t) + ae (t) , 

if r(t) is exponentially stable in the sense that 

(A.15) 

(A.16) 

where /30, /31 are positive constants, then e(t) and e(t) are exponentially 
stable in the sense that 

le(t)1 :::; exp (-at) le(O)1 + a ~0/31 (exp (-/31 t) - exp (-at)) 

le(t)l:::; aexp(-at)le(0)1+/3oexp(-/31t) 

a/3o 
+--/3- (exp (-/31t) - exp (-at)). 
a- 1 

Lemma A.8 [2] 

(A.17) 

(A.18) 

Let the transfer function matrix H (8) E IR b( x b( (rv) be exponentially sta­
ble and strictly proper, and let h (t) be the corresponding impulse response 
(obtained by evaluating the inverse Laplace transform of H (8)), then 

(i) if u E .c2, then y = h * u E .c2 n .coo, iJ E .c2, y is continuous, and 
y (t) ~ 0 as t ~ 00; 

(ii) if u E .coo, then y = h * u E .coo, iJ E .coo, and y is uniformly 
continuous; 

(iii) if u E .cp and 1 < p < 00, then y = h * u E .cp and iJ E .cp • 
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Lemma A.9 !4} 
Let A E JR~ X~ be a real, symmetric, positive-definite matrix; therefore, 

all of the eigenvalues of A are real and positive. Let Amin{A} and Amax{A} 
denote the minimum and maximum eigenvalues of A, respectively; then for 
Vx E JR~ 

(A.19) 

where 11·11 denotes the standard Euclidean norm. This lemma is often re­
ferred to as the Rayleigh-Ritz theorem. 

Lemma A.I0 [1, 6} 

If a function Nd(X, y) E JR is given by 

Nd = O(x)xy - kn 0 2(x)x2, (A. 20) 

where x, y E JR, O(x) E JR is a function dependent only on x, and kn is a 
positive constant, then Nd(X, y) can be upper bounded as follows: 

y2 
Nd ~ kn . (A.21) 

The bounding of Nd(X,y) in the above manner is often referred to as non­
linear damping [6] since a nonlinear control function, kn02(x)x, can be 
used to "damp-out" an unmeasurable quantity (e.g., y) multiplied by a 
known, measurable nonlinear function, O(x). 

Lemma A.ll [1} 

Let x(t) E JR be a function of time on [0,00). If the time derivative of 
x(t) satisfies the following relationship: 

(A.22) 

where {3o, (31 are positive constants, then x(t) E .coo (note that it is assumed 
that x(t) E .coo since x(t) is differentiable). 

Lemma A.12 [3} 

Let ¢(x,t) E JR be a function defined on x E [O,L] and t E [0,00) that 
satisfies the boundary condition 

¢(O,t) = ° Vt E [0,00); (A.23) 
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then the following inequalities hold: 

(A.24) 

't/x E [0, L] . (A.25) 

If in addition to (A.23), the function ¢(x, t) satisfies the boundary condition 

¢,AO, t) = 0 't/t E [0,00), (A.26) 

then the following inequalities also hold: 

foL ¢;(u, t)du ::; L21L ¢;u(u, t)du (A.27) 

¢2(x, t) ::; L31L ¢;u(u, t)du, ¢;(x, t) ::; L 1L ¢;u(u, t)du 't/x E [0, L]. 

(A.28) 

Lemma A.13 

Let f ( t ) , g ( t) E lR be functions of time on [0, 00), then the following 
inequalities hold: 

f2(t) + l(t) 2:: If(t)g(t)1 

P?) + 8g2(t) 2:: If(t)g(t)1 't/8 > O. 
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Appendix B 
Bounds for General Rigid Mechanical 
System 

In this appendix, the derivation of the upper bound for the variable X (.) 
given in (4.68) is illustrated. The triangle inequality is first used to find an 
upper bound for II xl! based on the definition of X (-) in (4.63) as follows: 

Ilxll ::; !!f!! + IIM(q)1J1! + 2I!M(q)efll + IlVm(q, q)ef I! + IlVm(q, q)ell· (B.1) 
In [1, 2], it has been shown that 

Ilfll ::; (0 Ilell + (111e112 + (211e112 + (3 II ell , (B.2) 
where the (/s are some positive bounding constants that depend on the 
physical parameters of the mechanical system and the bounds on desired 
motion trajectory. This inequality combined with induced matrix norms 
for the other terms on the right-hand side of (B.1) allows for the following 
new bound on Ilxll: 

Ilxll::; (0 Ilell + (11!e1!2 + (211e112 + (311el! + IIM(q)IIi2II1J11 

+21IM(q)lli21Iefll + IlVm(q, q)llioo Ilefll + IlVm(q, q)llioo lIell· 
(B.3) 

Properties 3.1 and 4.2 can be used to bound the occurrences of IIM(q)lli2 
and IlVm(q, q) Ilioo' respectively, in (B.3) to yield 

Ilxll::; (0 Ilell + (1 IIel12 + (211e112 + (31!el! + m2111J11 
(B.4) 
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Substitutions are now made in (B.4) using q (t) = qd (t) - e (t), the error 
system dynamics for e (t) in (4.58), and the assumed bound on qd (t) from 
(4.4) to find a new upper bound. The result of these substitutions is the 
following inequality, which contains known constants and the variables e (t), 
ef (t), and TJ (t): 

Ilxll:::; (0 Ilell + (111e112 + (1 II efl1 2 + (1 IITJI12 + 2(1 Ilell Ilefll 

+2(1I1eIIIITJII + 2(1 Ilefll IITJII + (211e11 2 + (3 I let II + (3 lie II 

+(31ITJII + m211TJII + 2m211efll + (c1(d21I efll + (c1 Ilellllefll 

+(c11I efI1 2 + (c1 IITJII I let II + (c1(d21Iell + (c1lleI1 2 

(B.5) 
Now, note from (4.69) that Ilxll 2 lief II , lIell , IITJII; hence, after collecting 
terms, a final upper bound can be placed on (B.5) as shown below: 

(B.6) 

where ao, a1 are positive bounding constants defined as 

(B.7) 
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Appendix C 
Bounds for the Puma Robot 

To prove the existence of the bounds given in (4.105), we will make use 
of the inequalities given in (4.104). First, note that the matrices in (4.105) 
contain mismatches only in the position variable. For general, revolute joint 
mechanical systems, these mismatches can be arranged to have one of the 
following general forms: 

cos (t ~i) - cos (t Vi)' sin (t ~i) - sin (t Vi) , 
<=J <=J <=J <=J 

(C.1) 
where ~i(t), Vi(t) are the i-th elements of V~(t), v(t) E ~n, respectively, 
j E {1,2, ... ,n}, k E {j,j + 1, ... ,n}, and n represents the system's to­
tal degrees-of-freedom (DOF). That is, all the elements of the matrices 
in (4.105) will contain terms similar to those given by (C.1). For exam­
ple, the most complicated elements of the centripetal-Coriolis matrix (i.e., 
Vm 53(q, q)) for the six-DOF Puma Robot Manipulator has the following 
form [1]: 

(C.2) 
+0.00064 cos (q2 + q3) sin (q4) ql, 

where qi(t) denotes the i-th element of the link position vector q(t) E ~6. 
If we define 

(C.3) 
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then, according to (C.2), the mismatch for element Vm 53(Q, q) becomes 

(CA) 

where fh(Cv,q) and n2(~,v,q) are scalar functions defined as 

and 

(C.6) 
-0.0025ql cos (V2 + V3) sin (V4) sin (V5) . 

Note that (C.5) can be rewritten as 

(C.7) 

hence, an upper bound can be placed on Inll as follows: 

Inll ~ 0.000641qll [lcos (~2 + ~3) - cos (V2 + v3)1 + Isin (~4) - sin (v4)IJ· 
(C.S) 

Upon the application of (4.104) to (C.S), we have the following new upper 
bound: 

Inll ~ 0.005l21qll [ltanh (~2 - v2)1 + Itanh (~3 - v3)1 + I tanh (~4 - v4)IJ . 
(C.g) 

Similar arguments can be applied to (C.6) to show that 

(C.lO) 

From (C.g) and (C.lO), it is clear that V53 (.) of (CA) can be upper bounded 
as follows: 

(C.Il) 

where (53 is some positive bounding constant. We can now use the fact 
that 

n 

Ilxll = L IXil2 ;::: IXil (C.12) 
i=1 
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where Xi is the i-th element of X, to show that 

(C.13) 

where (53 is some positive bounding constant. 
Since all of the elements of if (.), defined in (C.3), can be upper bounded 

in a similar fashion as shown in (C.13), it is now easy to see that IliflliOO can 

be upper bounded as in the third inequality of (4.105). Similar arguments 
can be followed to prove the other two inequalities given in (4.105). 
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Appendix D 
Control Programs 

In this appendix, we present the C program codes written for the real-time 
implementation of the DCAL controller of Section 3.5 in Chapter 3 and the 
flexible rotor boundary controller of Section 7.4 in Chapter 7. While the 
DCAL controller was implemented via the WinMotor control environment, 
the boundary controller used the Qmotor environment. See Section 1.4 in 
Chapter 1 for a description of these real-time control environments. 

The control program for both WinMotor and Qmotor, shown in the 
following, contain the subroutines described below: 

(i) init_ control(): Initializes the hardware boards and allocates memory for 
the second-order filters. 
(ii) input(): Reads in data from the A/D, encoder channels, and digital in­
puts; uses a backwards difference/filter to find the approximate time deriv­
ative of signals; provides safety features to shut the system off if the inputs 
go out of their safe range. 
(iii) control(): The heart of the program that contains the control algorithm 
and generates the value for the applied control input (usually a voltage). 
(iv) output(): Sends out the signals via the D / A and digital outputs; con­
tains safety features to shut the system off if the outputs go beyond their 
safe range. 
(v) end _ control(): Resets the hardware and de-allocates the memory re­
served for the filters. 
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It should be noted that while the init _ control() and end_ control() sub­
routines are executed only once at the start and completion of the control 
algorithm, the input(), control() and output() subroutines are executed 
continuously at a specified sampling period. In the following codes, the 
variables containing the prefix "VF _ " denote variables which the user can 
interactively change their values from the GUI without the need to recom­
pile the program. The variables containing the prefix "VD _" represent 
variables which are available for on-line graphing or storage. 

D.1 DCAL Controller 

1*======================================================= 
Note: Positive joint directions are as follows: 
Base Clockwise 
Elbow Clockwise 
========================================================*1 

#include "pc.h" 
#include "wmresour.h" 
#include <math.h> 

#define PI 3.1415 

I*These are predefined variables*1 
float state[10], statedot[10]; 
int system_order=4; 

extern float tsamp; 
extern int home_state; 
int Safety; 1*1 no error 0 problem has occured*1 
float VD_Base_Pos, VD_Elbow_Pos; 
float VD_Base_Vel, VD_Elbow_Vel; 
float err1, err2; 
float u1, u2; 
float VD_Time,VF_init; 

float Ii 0.267, I*robot parameters*1 
M1 73.0, 
I2 0.334, 
M2 9.78, 
I3 0.0075, 
M3 14.0, 
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13c 0.040, 
M4 5.0685, I*these must be calculated for the new link*1 
14 0.096, 
Mp 0.0, 
Ip 0.0, 
L1 0.359, 
L2 0.30, 
L3 0.136, 
L4 0.133, 
Fd1 5.3, 
Fd2 1.1j 

float Pi, P2, P3, M11, M12, M21, M22, 
MI11, MI12, MI21, MI22, detMinvj 

float VD_Error1, VD_Error2j 
float cosq2, sinq2,r1,r2,VD_Edot1,VD_Edot2j 
float Yd11, Yd12, Yd13, Yd14, Yd15, Yd21, Yd22, Yd23, Yd24, Yd25j 
float dphi1hat[2], dphi2hat[2]j 
float dphi3hat[2], dphi4hat[2], dphi5hat[2]j 
float phi1hat, phi2hat, phi3hat, phi4hat, phi5hatj 
float VD_phi1hat,VD_phi2hat,VD_phi3hat,VD_phi4hat,VD_phi5hatj 
float VF_Gamma1,VF_Gamma2,VF_Gamma3,VF_Gamma4,VF_Gamma5j 
float VD_q1d,VD_q1dotd,VD_q1ddotd,VD_q1tdotdj 
float VD_q2d,VD_q2dotd,VD_q2ddotd,VD_q2tdotdj 
float oldpos1,oldpos2,VF_K1,VF_K2,VF_Amp1,VF_Amp2j 
float VF_qdfreq,VF_qdpeak,VF_qdtau,VF_Alpha1,VF_Alpha2j 
float VD_Temp1,VD_Temp2j 

1*--------- CONTROL ROUTINE ---------*1 
control 0 
{ 

int ij 
float tt[8], texp, tsin, tcos, tausq, freqsqj 
float qd, qdotd, qddotd, qtdotdj 
float acc1, acc2j 

1*-------- Desired Trajectory --------*1 
tt[1] = VD_Timej 
for (i=2j i < 7j i++) 

tt[i] = tt[i-1] * VD_Timej 
texp = exp(-VF_qdtau*tt[3])j 
tsin = VF_qdpeak*sin(VF_qdfreq*VD_Time)j 
tcos = VF_qdpeak*cos(VF_qdfreq*VD_Time)j 
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tausq = VF_qdtau*VF_qdtau; 
freqsq= VF_qdfreq*VF_qdfreq; 

qd = tsin*(1.0-texp); 
qdotd = (3.0*tt[2]*VF_qdtau*tsin-VF_qdfreq*tcos) 

*texp+VF_qdfreq*tcos; 
qddotd = (6*tt[2]*VF_qdfreq*VF_qdtau*tcos 

+ (freqsq-9*tt [4] *tausq+6*tt [1] *VF_qdtau)*tsin) 
*texp-freqsq*tsin; 

qtdotd = (VF_qdfreq*(freqsq-27*tt[4]*tausq 
+18*VD_Time*VF_qdtau)*tcos 
-3*VF_qdtau*(3*tt[2]*freqsq 
-(9*tt[6]*tausq-18*tt[3]*VF_qdtau+2))*tsin)*texp 
-freqsq*VF_qdfreq*tcos; 

VD_q1d=VF_Amp1*qd; 
VD_q1dotd=VF_Amp1*qdotd; 
VD_q1ddotd=VF_Amp1*qddotd; 
VD_q1tdotd=VF_Amp1*qtdotd; 
VD_q2d=VF_Amp2*qd; 
VD_q2dotd=VF_Amp2*qdotd; 
VD_q2ddotd=VF_Amp2*qddotd; 
VD_q2tdotd=VF_Amp2*qtdotd; 

VD_Error1=VD_q1d-VD_Base_Pos; 
VD_Error2=VD_q2d-VD_Elbow_Pos; 

VD_Edot1=VD_q1dotd-VD_Base_Vel; 
VD_Edot2=VD_q2dotd-VD_Elbow_Vel; 

r1=VF_Alpha1*VD_Error1+VD_Edot1; 
r2=VF_Alpha2*VD_Error2+VD_Edot2; 

sinq2=sin(VD_q2d); 
cosq2=cos(VD_q2d); 

1*--- Regression Terms ---*1 
Yd11=VD_q1ddotd; 
Yd12=VD_q2ddotd; 
Yd13=2*cosq2*VD_q1ddotd 

+cosq2*VD_q2ddotd 
-sinq2*VD_q1dotd*VD_q2dotd 
-sinq2*(VD_q1dotd+VD_q2dotd)*VD_q2dotd; 

Yd14=VD_q1dotd; 
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Yd15=O.O; 

Yd21=O.O; 
Yd22=VD_q1ddotd+VD_q2ddotd; 
Yd23=cosq2*VD_q1ddotd+sinq2*VD_q1dotd*VD_q1dotd; 
Yd24=O.O; 
Yd25=VD_q2dotd; 

1*--- Adaptive Update Laws ---*1 
dphi1hat[1]=VF_Gamma1*(Yd11*r1+Yd21*r2); 
dphi2hat[1]=VF_Gamma2*(Yd12*r1+Yd22*r2); 
dphi3hat[1]=VF_Gamma3*(Yd13*r1+Yd23*r2); 
dphi4hat[1]=VF_Gamma4*(Yd14*r1+Yd24*r2); 
dphi5hat[1]=VF_Gamma5*(Yd15*r1+Yd25*r2); 

1* trapezoidal integrati0n algorithm *1 
phi1hat=phi1hat+O.5*tsamp*(dphi1hat[O]+dphi1hat[O]); 
dphi1hat[O]=dphi1hat[1]; 

phi2hat=phi2hat+O.5*tsamp*(dphi2hat[O]+dphi2hat[O]); 
dphi2hat[O]=dphi2hat[1]; 

phi3hat=phi3hat+O.5*tsamp*(dphi3hat[O]+dphi3hat[O]); 
dphi3hat[O]=dphi3hat[1]; 

phi4hat=phi4hat+O.5*tsamp*(dphi4hat[O]+dphi4hat[O]); 
dphi4hat[O]=dphi4hat[1]; 

phi5hat=phi5hat+O.5*tsamp*(dphi5hat[O]+dphi5hat[O]); 
dphi5hat[O]=dphi5hat[1]; 

1*------- Control Law ------- *1 
u1=Yd11*phi1hat+Yd12*phi2hat+Yd13*phi3hat 

+Yd14*phi4hat+Yd15*phi5hat 
+VF_K1*r1+VD_Error1; 

u2=Yd21*phi1hat+Yd22*phi2hat+Yd23*phi3hat 
+Yd24*phi4hat+Yd25*phi5hat 
+VF_K2*r2+VD_Error2; 

VD_Temp1=u1; 
VD_Temp2=u2; 
VD_phi1hat=phi1hat; 
VD_phi2hat=phi2hat; 
VD_phi3hat=phi3hat; 
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VD_phi4hat=phi4hatj 
VD_phi5hat=phi5hatj 

/*--- Error System (Display Only) in Degrees ---*/ 
VD_Errorl=VD_Errorl*180/PIj 
VD_Error2=VD_Error2*180/PIj 
VD_Base_Pos=VD_Base_Pos*180/PIj 
VD_Elbow_Pos=VD_Elbow_Pos*180/PIj 
} 

/*--------- INIT_CONTROL ROUTINE ---------*/ 
init_controlO 
{ 

int ij 

VD_Base_Pos=O.Oj 
VD_Base_Vel=O.Oj 
VD_Elbow_Pos=O.Oj 
VD_Elbow_Vel=O.Oj 

Pl=Il+I2+I3c+I3+I4+Ip + (M3+M4+Mp)*Ll*Ll 
+ M2*L3*L3 + M4*L4*L4 + Mp*L2*L2j 

P2=I3+I4+Ip + M4*L4*L4 + Mp*L2*L2j 
P3=M4*Ll*L4 + Mp*Ll*L2j 

dphilhat[O]=O.Oj 
dphi2hat[O]=O.Oj 
dphi3hat[O]=O.Oj 
dphi4hat[O]=O.Oj 
dphi5hat[O]=O.Oj 

philhat=3.473*VF_initj 
phi2hat=O.193*VF_initj 
phi3hat=O.242*VF_initj 
phi4hat=5.3*VF_initj 
phi5hat=1.1*VF_initj 

oldposl=O.Oj 
oldpos2=O.Oj 

VD_Time=-l*tsampj 
Reset_HCTL(O,2)j 
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Dac_Out(O, 0, 0); 
Dac_Out(O, 1, 0); 
Dac_Switch(O, 1, 1); 

*PC_PARM7=Ox24; 
*PC_PARM6=OxOO; 

Safety=l; 
} 

/*--------- INPUT ROUTINE ---------*/ 
input 0 
{ 

int limit; 
long posl, pos2, temp; 

D.l DCAL Controller 295 

limit=*PC_PARM7; /*check for limit switch problems*/ 
limit=limit&OxE7; 
if (limit!=Ox24) 

{ 

Safety=O; /*indicate a problem has occured*/ 
if (limit & Ox80) 

*C30_PARM1=DDR_BS_CW_LMT; 
if (limit & Ox40) 

*C30_PARM1=DDR_EB_CCW_LMT; 
if (!(limit & Ox20)) 

*C30_PARM1=DDR_BS_EMERG; 
if (!(limit & Ox04)) 

*C30_PARM1=DDR_EB_EMERG; 
if (limit & Ox02) 

*C30_PARM1=DDR_BS_CCW_LMT; 
if (limit & OxOl) 

*C30_PARM1=DDR_EB_CW_LMT; 
*C30_COMMAND=C30_ERROR; 
} 

/*Base CW Limit*/ 

/*Elbow CCW Limit*/ 

/*Base Emergency*/ 

/*Elbow Emergency*/ 

/*Base CCW Limit*/ 

/*Elbow CW Limit*/ 

/*--- Get the joint positions ---*/ 
Get_Position(O, &posl, &pos2); 

VD_Base_Pos=(float)posl/153600*2*PI; 
VD_Elbow_Pos=(float)pos2/153600*2*PI; 

VD_Base_Vel=(VD_Base_Pos-oldposl)/tsamp; 
VD_Elbow_Vel=(VD_Elbow_Pos-oldpos2)/tsamp; 
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oldpos1=VD_Base_Pos; 
oldpos2=VD_Elbow_Pos; 

VD_Time=VD_Time+tsamp; 
} 

/*--------- OUTPUT ROUTINE ---------*/ 
output 0 
{ 

int Actual_Out; 

Actual_Out=(int) (Safety*(-1*(u1*2047/10)/19.3)); 
if (Actual_Out>2047) 

Actual_Out=2047; 
if (Actual_Out<-2047) 

Actual_Out=-2047; 
Dac_Out(O, 0, Actual_Out); 

Actual_Out=(int)(Safety*(-1*(u2*2047/10)/3.12)); 
if (Actual_Out>2047) 

Actual_Out=2047; 
if (Actual_Out<-2047) 

Actual_Out=-2047; 
Dac_Out(O, 1, Actual_Out); 
} 

/*--------- END_CONTROL ROUTINE ---------*/ 
end_ control 0 
{ 

Dac_Out(O, 0, 0) ; 
Dac_Out(O, 1, 0) ; 
Dac_Out(1, 0, 0); 
} 

D.2 Flexible Rotor 

/*======================================================= 
Note: All measurements are in the rotated frame 
The force is calculated w.r.t the rotating frame, 
but applied by the magnets in the fixed frame, 
hence use sin-cos transformation. 
The LED position is measured by the cameras in 
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the fixed framej therefore use the inverse transformation. 
=========================================================*/ 

#include "qc.def" 
#include <math.h> 

extern float tsampj 

typedef unsigned char BYTEj 
typedef unsigned int WORDj 

#define ECL_CARD_ADDR1 Ox340 
#define ECL_CARD_ADDR2 Ox360 
#define OlIT_OF_RANGE 
#define NOT_DETECTED 
#define MULTIPLE 

«WORD)Ox800) 
«WORD)Ox1000) 
«WORD)Ox2000) 

#define PI 3.1415926535879323846264338 

/*--- Variables and Functions for Camera Operation ---*/ 

void CcdLedEnable ( BYTE, BYTE )j 
void CcdThresholdSet1 ( WORD )j 
WORD CcdPixelCnt1 ( void )j 
void CcdThresholdSet2 ( WORD )j 
WORD CcdPixelCnt2 ( void )j 

BYTE led_id_on=1j /* LED number 1 ON permanently */ 

WORD w_pixel_cnt1, 
led_bias1j 

WORD w_pixel_cnt2, 
led_bias2j 

int relative_pixel1j 
int relative_pixe12j 

WORD CCD_THRESHOLD, 
LED_ON_TIME_MASKj 

/*--- VD_ and VF_ variables for the camera ---*/ 
float VF_led_dist,VF_Delayj 
float VD_pixel1,VD_pixe12,VD_Timej 
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1*--- VD_ and VF_ variables for control ---*1 
float 

VD_Position_M, 
VD_Position_X, VD_Position_Y, 
VD_Shear_X, VD_Shear_Y, 
VD_ShearOer_X, VD_ShearOer_Y, 
VD_Id_Xi, VD_Id_X2, VD_Id_Yi, VD_Id_Y2, 
VD_Current_Xi, VD_Current_X2, 
VD_Current_Yi, VD_Current_Y2, 
VD_Current_M; 

float 
VD_Error, 
VD_Fd_X, VD_Fd_Y, 
VD_Fddot_X, VD_Fddot_Y, 
VD_Fd_Xi, VD_Fd_X2; VD_Fd_Yi, VD_Fd_Y2, 
VD_Torque, VD_Voltage_M, 
VD_EtaX, VD_EtaY, 
VD_Voltage_Xi, VD_Voltage_X2, 
VD_Voltage_Yi, VD_Voltage_Y2, 
VD_Voltage_M; 

float 
VD_Tempi, VD_Temp2, VD_Temp3, 
VD_Velocity_M, 
VD_Mhat, VD_Elhat, 
VD_Velocity_X, VD_Velocity_Y; 

float 
VF _GammaEI, VF _GammaM, 
VF_GammaO, VF_Alpha, VF_Phi, 
VF _Ks, VF _Kr, VF _Ke, VF _Init, VF _Km, 

VF_OesVel_M, 
VF_VelFilter_X, VF_VelFilter_Y, VF_VelFilter_M, 
VF_FddotFil_X, VF_FddotFil_Y, 
VF_ShearOffset_X, VF_ShearOffset_Y, 
VF_ShearGain_X, VF_ShearGain_Y, 
VF_ShearFil_X, VF_ShearFil_Y, 
VF_ShearOerFil_X, VF_ShearOerFil_Y; 

int Safety = 1; 

struct filter *filter_vel_x; 
struct filter *filter_vel_y; 
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struct filter *filter_vel_m; 
struct filter *filter_fddot_x; 
struct filter *filter_fddot_y; 
struct filter *filter_shear_x; 
struct filter *iil ter _shear _y; 
struct filter *filter_shearder_x; 
struct filter *filter_shearder_y; 

float 
unfilt_vel_x, unfilt_vel_y, unfilt_vel_m, 
unfilt_fddot_x, unfilt_fddot_y, 
unfilt_shear_x, unfilt_shear_y, 
unfilt_shearder_x, unfilt_shearder_y; 

float 
M, EI, Ktau, 
Determ, 
aux_X, aux_Y, 
Xl, X2, Yl, Y2, 
xldot, x2dot, yldot, y2dot, 
expXl, expX2, expYl, expY2, 
R, Ll, LO, Beta, 
Lxl, Lx2, Lyl, Ly2, 
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RootFdXl, RootFdX2, RootFdYl, RootFdY2, 
RootLexpXl, RootLexpX2, RootLexpYl, RootLexpY2, 
FdXldot, FdX2dot, FdYldot, FdY2dot, 
P_FdXl, P_FdX2, P_FdYl, P_FdY2, 
P_IdX1FdXl, P_IdX2FdX2, P_IdY1FdYl, P_IdY2FdY2, 
P_IdX1Xl, P_IdX2X2, P_IdY1Yl, P_IdY2Y2, 
IddotXl, IddotX2, IddotYl, IddotY2, 
etaiXl, etaiX2, etaiYl, etaiY2, 
oldforce_X, oldforce_Y, 
oldshear_X, oldshear_Y, 
Fd_X, Fd_Y, 
Shear_X, Shear_Y, 
Position_X, Position_Y, 
Omega_X, Omega_Y, dMhat[2] , dElhat[2], 
oldpos_X, oldpos_Y, oldpos_M; 

/*--------- CONTROL ROUTINE ---------*/ 
control 0 
{ 

if(VD_Time < VF_Delay) return; 
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Xi VD_Position_X; 
X2 -VD_Position_X; 
Y1 VD_Position_Y; 
Y2 = -VD_Position_Y; 

x1dot VD_Velocity_X; 
x2dot -VD_Velocity_X; 
y1dot VD_Velocity_Y; 
y2dot -VD_Velocity_Y; 

expX1 expCBeta*X1); 
expX2 expCBeta*X2); 
expYi expCBeta*Y1); 
expY2 expCBeta*Y2); 

Lxi L1*expX1 + LO; 
Lx2 L1*expX2 + LO; 
Ly1 L1*expYi + LO; 
Ly2 L1*expY2 + LO; 

1*--- Error Terms ---*1 
VD_Error = VD_Velocity_M - VF_DesVel_M; 
VD_EtaX = VD_Velocity_X 

- VD_Velocity_M*VD_Position_Y - VD_Shear_X; 
VD_EtaY = VD_Velocity_Y 

+ VD_Velocity_M*VD_Position_X - VD_Shear_Y; 

1*--- Auxiliary Terms for Adaptive Laws ---*1 
Omega_X = VD_Velocity_M*CVD_Velocity_M 

*VD_Position_X + VD_Velocity_Y)-VD_ShearDer_X; 
Omega_Y = VD_Velocity_M*CVD_Velocity_M 

*VD_Position_Y - VD_Velocity_X)-VD_ShearDer_Y; 

1*--- Adaptive Update Laws ---*1 
dElhat[1] = VF_GammaEI*CVD_Shear_X*VD_EtaX 

+ VD_Shear_Y*VD_EtaY); 
VD_Elhat = VD_Elhat + 0.5*tsamp*CdElhat[1] + dElhat[O]); 
dElhat[O] = dElhat[1]; 

dMhat[1] = VF_GammaM*COmega_X*VD_EtaX 
+ Omega_Y*VD_EtaY); 

VD_Mhat = VD_Mhat + 0.5*tsamp*CdMhat[1] + dMhat[O]); 
dMhat [0] = dMhat [1] ; 
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if (VD_Mhat < 0.2) VD_Mhat=0.2j 
if (VD_Mhat > 0.3) VD_Mhat=0.3j 

if (VD_Elhat < 3.8E-07) VD_Elhat=3.8E-07j 
if (VD_Elhat > 4.7E-07) VD_Elhat=4.7E-07j 

/*--- Auxiliary Terms for Desired Force ---*/ 
Determ = 1+VD_Position_M*VD_Position_Mj 

Fd_X = VF_Ks*VD_EtaX + VD_Elhat*VD_Shear_X 
+ VD_Mhat*Omega_Xj 

Fd_Y = VF_Ks*VD_EtaY + VD_Elhat*VD_Shear_Y 
+ VD_Mhat*Omega_Yj 

M = VD_Mhatj 
EI= VD_Elhatj 

1*--- Desired Force on each axis ---*/ 
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/*-------------------------------------------------------
The Fd_X and Fd_Y forces computed are w.r.t the rotating 
frame. 
The magnets which apply the force are a part of the fixed 
framej hence we decompose the forces as shown below 

--------------------------------------------------------*/ 

VD_Fd_X = cos(VD_Position_M)*Fd_X - sin(VD_Position_M)*Fd_Yj 
VD_Fd_Y = sin(VD_Position_M)*Fd_X + cos(VD_Position_M)*Fd_Yj 

/*--- Desired Torque applied to the driving motor ---*/ 
VD_Torque = - VF_Kr*VD_Error 

*(1-exp(-VF_Alpha*(VD_Time-VF_DelaY»)j 

/*--- Desired Force applied by magnet ---*/ 
VD_Fd_X1 = 0.5*( VD_Fd_X + sqrt(VD_Fd_X*VD_Fd_X + VF_GammaO»j 
VD_Fd_X2 0.5*(-VD_Fd_X + sqrt(VD_Fd_X*VD_Fd_X + VF_GammaO»j 

VD_Fd_Y1 0.5*( VD_Fd_Y + sqrt(VD_Fd_Y*VD_Fd_Y + VF_GammaO»j 
VD_Fd_Y2 = 0.5*(-VD_Fd_Y + sqrt(VD_Fd_Y*VD_Fd_Y + VF_GammaO»j 

RootFdX1 sqrt(2*VD_Fd_X1)j 
RootFdX2 sqrt(2*VD_Fd_X2)j 



www.manaraa.com

302 Appendix D. Control Programs 

RootFdYi 
RootFdY2 

RootLexpXl 
RootLexpX2 
RootLexpYl 
RootLexpY2 

sqrt(2*VD_Fd_Yl); 
sqrt(2*VD_Fd_Y2); 

sqrt(Beta*Ll*expXl); 
sqrt(Beta*Ll*expX2); 
sqrt(Beta*Ll*expYl); 
sqrt(Beta*Ll*expY2); 

/*--- Filtering the forces ---*/ 
unfilt_fddot_x = (VD_Fd_X - oldforce_X)/tsamp; 
VD_Fddot_X = filter(unfilt_fddot_x, filter_fddot_x); 
oldforce_X = VD_Fd_X; 

unfilt_fddot_y = (VD_Fd_Y - oldforce_Y)/tsamp; 
VD_Fddot_Y = filter (unfilt_fddot_y , filter_fddot_y); 
oldforce_Y = VD_Fd3'; 

/*--- Derivative of the force on each magnet ---*/ 
FdXldot = 0.5*( VD_Fddot_X+«VD_Fd_X*VD_Fddot_X) 

/sqrt(VD_Fd_X*VD_Fd_X + VF_GammaO))); 
FdX2dot = 0.5*(-VD_Fddot_X+«VD_Fd_X*VD_Fddot_X) 

/sqrt(VD_Fd_X*VD_Fd_X + VF_GammaO))); 
FdYldot = 0.5*( VD_Fddot_Y+«VD_Fd_Y*VD_Fddot_Y) 

/sqrt(VD_Fd_Y*VD_Fd_Y + VF_GammaO))); 
FdY2dot = 0.5*(-VD_Fddot_Y+«VD_Fd_Y*VD_Fddot_Y) 

/sqrt(VD_Fd_Y*VD_Fd_Y + VF_GammaO))); 

/*--- Desired Currents ---*/ 
VD_Id_Xl = RootFdXl/RootLexpXl; 
VD_Id_X2 = RootFdX2/RootLexpX2; 
VD_Id_Yl = RootFdYl/RootLexpYl; 
VD_Id_Y2 = RootFdY2/RootLexpY2; 

/*--- Partial Derivative of Fd w.r.t. X ---*/ 
P_FdXl = Beta*Beta*expXl*VD_Id_Xl*VD_Id_Xl; 
P_FdX2 = Beta*Beta*expX2*VD_Id_X2*VD_Id_X2; 
P_FdYl = Beta*Beta*expYl*VD_Id_Yl*VD_Id_Yl; 
P_FdY2 = Beta*Beta*expY2*VD_Id_Y2*VD_Id_Y2; 

/*--- Partial Derivative of Id w.r.t. Fd ---*/ 
P_IdX1FdXl = l/(RootLexpXl*RootFdXl); 
P_IdX2FdX2 = 1/(RootLexpX2*RootFdX2); 
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P_IdY1FdYl = l/(RootLexpYl*RootFdYl); 
P_IdY2FdY2 = 1/(RootLexpY2*RootFdY2); 
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/*--- Partial Derivative of Id w.r.t. X ---*/ 
P_IdX1Xl = (P_FdXl - Beta*VD_Fd_Xl) 

/(RootLexpXl*RootFdXl); 
P_IdX2X2 = (P_FdX2 - Beta*VD_Fd_X2) 

/(RootLexpX2*RootFdX2); 
P_IdY1Yl = (P_FdYl - Beta*VD_Fd_Yl) 

/(RootLexpYl*RootFdYl); 
P_IdY2Y2 = (P_FdY2 - Beta*VD_Fd_Y2) 

/(RootLexpY2*RootFdY2); 

/*--- Iddot ---*/ 
IddotXl = P_IdX1FdXl*FdXldot + P_IdX1Xl*xldot; 
IddotX2 = P_IdX2FdX2*FdX2dot + P_IdX2X2*x2dot; 
IddotYl = P_IdY1FdYl*FdYldot + P_IdY1Yl*yldot; 
IddotY2 = P_IdY2FdY2*FdY2dot + P_IdY2Y2*y2dot; 

/*--- Current Tracking Errors ---*/ 
etaiXl = VD_Id_Xl - VD_Current_Xl; 
etaiX2 = VD_Id_X2 - VD_Current_X2; 
etaiYl = VD_Id_Yl - VD_Current_Yl; 
etaiY2 = VD_Id_Y2 - VD_Current_Y2; 

/*--- Desired Voltages to the magnets ---*/ 
VD_Voltage_M = VLKm*(VD_Torque-Ktau*VD_Current_M); 

VD_Position_M = VD_Position_M/(2*PI)*360; 
VD_Error = VD_Error/(2*PI)*360; 

if (VD_Time < (VF_Delay + 3.0)) return; 

VD_Voltage_Xl = VF_Init*(VF_Ke*etaiXl 
+ R*VD_Current_Xl + Lxl*IddotXl 
+ (Ll*xldot*expXl)*(VD_Current_Xl-etaiXl/2)); 

VD_Voltage_X2 = VF_Init*(VF_Ke*etaiX2 
+ R*VD_Current_X2 + Lx2*IddotX2 
+ (Ll*x2dot*expX2)*(VD_Current_X2-etaiX2/2)); 

VD_Voltage_Yl = VF_Init*(VF_Ke*etaiYl 
+ R*VD_Current_Yl + Lyl*IddotYl 
+ (Ll*yldot*expYl)*(VD_Current_Yl-etaiYl/2)); 

VD_Voltage_Y2 = VF_Init*(VF_Ke*etaiY2 



www.manaraa.com

304 Appendix D. Control Programs 

+ R*VD_Current_Y2 + Ly2*IddotY2 
+ (L1*y2dot*expY2)*(VD_Current_Y2-etaiY2/2)); 

} 

/*--------- INIT_CONTROL ROUTINE ---------*/ 
ini t_control 0 
{ 

SetMultiQConiig(6, 6, 2, 0, 0); 
VD_Time = -tsamp; 

/*--- Initialize Filters ---*/ 
filter_vel_x = (struct filter *) 

malloc(sizeof(struct filter)); 
initfilter(VF_VelFilter_X, filter_vel_x); 

filter_vel_y = (struct filter *) 
malloc(sizeof(struct filter)); 

initfilter(VF_VelFilter_Y, filter_vel_y); 

filter_vel_m = (struct filter *) 
malloc(sizeof(struct filter)); 

initfilter(VF_VelFilter_M, filter_vel_m); 

filter_fddot_x = (struct filter *) 
malloc(sizeof(struct filter)); 

initfilter(VF_FddotFil_X, filter_fddot_x); 

filter_fddot_y = (struct filter *) 
malloc(sizeof(struct filter)); 

initfilter(VF_FddotFil_Y, filter_fddot_y); 

filter_shear_x = (struct filter *) 
malloc(sizeof(struct filter)); 

initfilter(VF_ShearFil_X, filter_shear_x); 

filter_shear_y = (struct filter *) 
malloc(sizeof(struct filter)); 

initfilter(VF_ShearFil_Y, filter_shear_y); 

filter_shearder_x = (struct filter *) 
malloc(sizeof(struct filter)); 

initfilter(VF_ShearFil_X, filter_shearder_x); 
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filter_shearder_y = (struct filter *) 

malloc(sizeof(struct filter)); 
initfilter(VF_ShearFil_Y, filter_shearder_y); 

ResetEncoder(O); 
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focal_length = 0.085; 1* 85mm Nikon Lens *1 
CCD_THRESHOLD Ox180; 
LED_ON_TlME_MASK OxAO; 

CcdThresholdSetl CCD_THRESHOLD); 
CcdThresholdSet2 CCD_THRESHOLD); 
led_id_on = (BYTE) 1; 
pl = VF_led_dist; 
CcdLedEnable ( led_id_on, LED_ON_TIME_MASK ); 

1* lens to image distance *1 
p2 = 1.0 I (1.0/focal_length - 1.0/pl); 

focal_gain = pl I p2; 

1* Active line scan length is 26.624mm *1 
max_def = 0.026624 * focal_gain I 2.0; 

1* 13um per pixel *1 
m_per_pixel = 0.000013 * focal_gain; 
Ll = 0.0002; 
LO = 0.0552; 
Beta = 60; 
R = 10.0; 
VD_Mhat = 0.25; 

1* Bending Stiffness of a hollow 
cylindrical plasticised vinyl pipe *1 
VD_Elhat = 3.786E-07; 

1* Torque constant of the motor *1 
Ktau = 0.056492666; 

oldpos_X 0.0; 
oldpos_Y 0.0; 
oldpos_M 0.0; 
oldforce X 0.0; 
oldforce_Y 0.0; 
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oldshear_X 0.0; 
oldshear_Y 0.0; 

etaiX1 0.0; 
etaiX2 0.0; 
etaiY1 0.0; 
etaiY2 0.0; 

VD_Position_X 
VD_Position_Y 
VD_Position_M 
VD3elocity_X 
VD_Velocity_Y 
VD_Velocity_M = 
VD_Shear_X 
VD_Shear3 
VD_ShearDer_X 
VD_ShearDer_Y 
VD_Fd_X 0.0; 
VD_Fd3 0.0; 

VD_Voltage_M 
VD30ltage_X1 
VD30ltage_X2 
VD30ltage_Yi 
VD30ltage_Y2 

0.0; 
0.0; 
0.0; 
0.0; 
0.0; 
0.0; 
0.0; 
0.0; 
0.0; 
0.0; 

0.0; 
0.0; 
0.0; 
0.0; 
0.0; 

VD_Current_M = 0.0; 
VD_Current_X1 0.0; 
VD_Current_X2 0.0; 
VD_Current_Y1 0.0; 
VD_Current_Y2 0.0; 
} 

1*--------- INPUT ROUTINE ---------*1 
input 0 
{ 

long pos; 

1*--- Read in the Positions of both axes ---*1 
while(VD_Time < VF_Delay) { 

led_bias1 = CcdPixelCnt1(); 
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} 

led_bias2 CcdPixelCnt2()j 
returnj 
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w_pixel_cnt1 = CcdPixelCnt1()j 
w_pixel_cnt2 = CcdPixelCnt2()j 

if ( (w_pixel_cnt1 & Ox3800) == 0 ) 
relative_pixel1 = w_pixel_cnt1 - led_bias1j 

if ( (w_pixel_cnt2 & Ox3800) == 0 ) 
relative_pixe12 = w_pixel_cnt2 - led_bias2j 

1*-------------------------------------------------------
Note : Position Conventions 
Variables Position_X and Position_Y reflect this sign 
convention. 

+ve Rotation is from +X to +Y, i.e. clockwise in 
the top view. 

+ve Forces Fd_X and Fd_Y act along the positive 
X and Y axes respt. 

-------------------------------------------------------*1 

Position_X -(relative_pixel1 * m_per_pixel)j 
Position_Y (relative_pixe12 * m_per_pixel)j 

VD_pixel1 = w_pixel_cnt1j 
VD_pixe12 = w_pixel_cnt2j 

1*--- Read in the Angular Position 
of the motor in radians ---*1 
pos = G_ENC[O]j 
VD_Position_M = (float) (pos)/4000*2*Plj 

1*-------------------------------------------------------
The X and Y positions read are w.r.t the fixed frame. 
The control uses the x and y positions of the rotating frame 
Hence we reverse decompose it, as shown below 

-------------------------------------------------------*1 
VD_Position_X = cos(VD_Position_M)*Position_X 

+ sin (VD_Position_M) *Position_Y j 
VD_Position_Y = -sin(VD_Position_M)*Position_X 

+ cos (VD_Position_M)*Position_Yj 



www.manaraa.com

308 Appendix D. Control Programs 

/*--- Backwards difference to 
obtain velocites of X and Y axes ---*/ 

unfilt_vel_x = (VD_Position_X - oldpos_X)/tsamp; 
VD_Velocity_X = filter(unfilt_vel_x, filter_vel_x); 
oldpos_X = VD_Position_X; 

unfilt_vel_y = (VD_Position_Y - oldpos_Y)/tsamp; 
VD_Velocity_Y = filter(unfilt_vel_y, filter_vel_y); 
oldpos_Y = VD_Position_Y; 

/*--- Read in the currents of the magnets and the motor ---*/ 
VD_Current_X1= IToV (G_ADC[O]) * 2.0 + 0.1363; 
VD_Current_X2= IToV (G_ADC[1]) * 2.0 + 0.1587; 
VD_Current_Y1= IToV (G_ADC[2]) * 2.0 + 0.1954; 
VD_Current_Y2= IToV (G_ADC[4]) * 2.0 + 0.2540; 
VD_Current_M = IToV (G_ADC[5]) * 2.0 + 0.2466; 

if ( VD_Current_X1 < -5.0 II VD_Current_X1 > 5.0 II 
VD_Current_X2 < -5.0 II VD_Current_X2 > 5.0 II 
VD_Current_Y1 < -5.0 II VD_Current_Y1 > 5.0 II 
VD_Current_Y2 < -5.0 II VD_Current_Y2 > 5.0 II 
VD_Current_M < -4.5 II VD_Current_M > 4.5 ) Safety=O; 

/*--- Backwards difference to obtain velocity of motor ---*/ 
unfilt_vel_m = (VD_Position_M - oldpos_M)/tsamp; 
VD_Velocity_M = filter (unfilt_vel_m, filter_vel_m); 
oldpos_M = VD_Position_M; 

/*--- Read in and filter the shear values ---*/ 
unfilt_shear_x = IToV(G_ADC[3]); 
Shear_X = filter (unfilt_shear_x, filter_shear_x); 

unfilt_shear_y = IToV(G_ADC[7]); 
Shear_Y = filter (unfilt_shear_y, filter_shear_y); 

VD_Shear_X VF_ShearGain_X * (Shear_X - VF_ShearOffset_X); 
VD_Shear_Y VF_ShearGain_Y * (Shear_Y - VF_ShearOffset_Y); 

/*--- Filtered derivative of the Shear ---*/ 
unfilt_shearder_x = (VD_Shear_X - oldshear_X)/tsamp; 
VD_ShearDer_X = filter (unfilt_shearder_x, filter_shearder_x); 
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unfilt_shearder_y = (VD_Shear_Y - oldshear_Y)/tsamp; 
VD_ShearDer_Y = filter(unfilt_shearder_y, filter_shearder_y); 
oldshear_Y = VD_Shear_Y; 
} 

/*--------- OUTPUT ROUTINE ---------*/ 
output 0 
{ 

if( VD_Voltage_Xi < -70.0 II VD_Voltage_X1 
VD_Voltage_Yi < -70.0 II VD_Voltage_Yi 
VD3oltage_X2 < -70.0 II VD30ltage_X2 

> 70.0 
> 70.0 
> 70.0 

VD_Voltage_Y2 < -70.0 II VD_Voltage_Y2 > 70.0 
VD_Voltage_M < -20.0 II VD_Voltage_M > 20.0 

G_DAC[O] = VToI(VD_Voltage_X1/55.0*(float)Safety); 
G_DAC[1] = VToI(VD_Voltage_Y1/55.0*(float)Safety); 
G_DAC[2] = VToI(VD_Voltage_X2/55.0*(float)Safety); 
G_DAC[3] = VToI(VD_Voltage_Y2/55.0*(float)Safety); 
G_DAC[6] = VToI(VD_Voltage_M/55.0*(float)Safety); 
} 

/*--------- END_CONTROL ROUTINE ---------*/ 
end_control 0 
{ 

} 

CcdLedEnable ( led_id_on, 0 ); 
free(filter_vel_x); 
free(filter_vel_y); 
free(filter_vel_m); 
free(filter_fddot_x); 
free(filter_fddot_y); 
free(filter_shear_x); 
free(filter_shear_y); 
free(filter_shearder_x); 
free(filter_shearder_y); 

II 
II 
II 
II 
) Safety=O; 

/*-------------------------------------------------------
Functions : CcdLedEnable(), CcdThresholdSet1(), CcdPixelCnt1(), 

CcdThresholdSet2(), CcdPixelCnt2(). 
Description : Camera Routines Only 

-------------------------------------------------------*/ 
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void CcdLedEnable ( BYTE b_led_id, BYTE b_led_on_time ) 
{ 

} 

outp (ECL_CARD_ADDRl + OxOO) , «BYTE)l « b_led_id) ); 
outp (ECL_CARD_ADDRl + Ox02) , b_led_on_time ); 

void CcdThresholdSetl ( WORD w_threshold ) 
{ 

/* isolate bit-ll ... 4 */ 
b_valu = (BYTE) (w_threshold » 4); 
outp ( (ECL_CARD_ADDRl + Ox05) , b_valu ); 

/* isolate bit-3 ... 0 */ 

} 

b_valu = (BYTE)w_threshold & (BYTE)OxOF; 
outp ( (ECL_CARD_ADDRl + Ox04) , b_valu ); 

WORD CcdPixelCntl (void) 
{ 

union 
{ 

WORD w; 
BYTE b[2]; 

} u_old; 

union 
{ 

WORD w; 
BYTE b[2]; 

} u_new; 

/* begin with unlikely value */ 
u_new.w = (WORD)OxFFFF; 

do 
{ 

/* high byte */ 
u_new.b[l] = inp ( ECL_CARD_ADDRl + Ox02 ); 
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/* low byte */ 
u_new.b[O] = inp ( ECL_CARD_ADDRl + OxOO ); 

u_new.w = u_new.w & Ox3FFF; 
} while ( u_new.w != u_old.w ); 

} 

void CcdThresholdSet2 ( WORD w_threshold ) 
{ 

/* isolate bit-ll ... 4 */ 
b_valu = (BYTE) (w_threshold » 4); 
outp ( CECL_CARD_ADDR2 + OxOS) , b_valu ); 

/* isolate bit-3 ... 0 */ 

} 

b_valu = (BYTE)w_threshold & (BYTE)OxOF; 
outp ( (ECL_CARD_ADDR2 + Ox04) , b_valu ); 

WORD CcdPixelCnt2 (void) 
{ 

union 
{ 

WORD w; 
BYTE b[2]; 

} u_old; 

union 
{ 

WORD w; 
BYTE b[2]; 

} u_new; 

/* begin with unlikely value */ 
u_new.w = (WORD)OxFFFF; 

do 
{ 
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1* high byte *1 
u_new.b[l] = inp ( ECL_CARD_ADDR2 + Ox02 ); 

1* low byte *1 
u_new.b[O] = inp ( ECL_CARD_ADDR2 + OxOO ); 

u_new.w = u_new.w & Ox3FFF; 
} while ( u_new.w != u_old.w ); 

return ( u_new.w ); 
} 
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